Tucker, Applied Combinatorics1 SECTION 5.2 Simple Arrangements and Selections Aaron Desrochers and Ben Epstein.

Slides:



Advertisements
Similar presentations
Permutations and Combinations
Advertisements

Permutations and Combinations
Discrete Probability Rosen 5.1.
Combinatorics & Probability Section 3.4. Which Counting Technique? If the problem involves more than one category, use the Fundamental Principle of Counting.
1 Combination Symbols A supplement to Greenleafs QR Text Compiled by Samuel Marateck ©2009.
Counting and Gambling Section 4Objectives: Understand how to use the fundamental counting principle to analyze counting problems that occur in gambling.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 4.5.
Counting. Counting in Algorithms How many comparisons are needed to sort n numbers? How many steps to compute the GCD of two numbers ? How many steps.
Great Theoretical Ideas in Computer Science for Some.
Copyright © 2002 by Radhika Nagpal and Charles E. Leiserson. All rights reserved. October 30, L9-2.1 Mathematics for Computer Science MIT 6.042J/18.062J.
Basic Permutations and Combinations
5.3 Permutations and Combinations
Chapter 10 Counting Techniques.
Discrete Mathematics Math 6A Homework 5 Solution.
Section 3.4 The Traveling Salesperson Problem Tucker Applied Combinatorics By Aaron Desrochers and Ben Epstein.
Counting Chapter 6 With Question/Answer Animations.
Chapter 8 Counting Principles: Further Probability Topics Section 8.3 Probability Applications of Counting Principles.
Math 221 Integrated Learning System Week 2, Lecture 1
Counting Principles The Fundamental Counting Principle: If one event can occur m ways and another can occur n ways, then the number of ways the events.
Counting Techniques: Combinations
Multiplication Rule. A tree structure is a useful tool for keeping systematic track of all possibilities in situations in which events happen in order.
CSE115/ENGR160 Discrete Mathematics 04/17/12
4/5/05Tucker, Sec Applied Combinatorics, 4rth Ed. Alan Tucker Section 5.4 Distributions Prepared by Jo Ellis-Monaghan.
Tucker, Section 5.41 Section 5.4 Distributions By Colleen Raimondi.
Probability Using Permutations and Combinations
1 Permutations and Combinations CS/APMA 202 Epp section 6.4 Aaron Bloomfield.
Permutations and Combinations
Logic and Introduction to Sets Chapter 6 Dr.Hayk Melikyan/ Department of Mathematics and CS/ For more complicated problems, we will.
College Algebra Fifth Edition
4. Counting 4.1 The Basic of Counting Basic Counting Principles Example 1 suppose that either a member of the faculty or a student in the department is.
Chapter 7 Logic, Sets, and Counting Section 4 Permutations and Combinations.
6.4 Permutations and combinations For more complicated problems, we will need to develop two important concepts: permutations and combinations. Both of.
Copyright © Cengage Learning. All rights reserved. CHAPTER 9 COUNTING AND PROBABILITY.
1 Permutations and Combinations CS/APMA 202 Rosen section 4.3 Aaron Bloomfield.
1 Permutations and Combinations. 2 In this section, techniques will be introduced for counting the unordered selections of distinct objects and the ordered.
Counting. Techniques for counting Rule 1 Suppose we carry out have a sets A 1, A 2, A 3, … and that any pair are mutually exclusive (i.e. A 1  A 2 =
Basic Counting Lecture 12: Oct 28. This Lecture We will study some basic rules for counting. Sum rule, product rule, generalized product rule Permutations,
1 Melikyan/DM/Fall09 Discrete Mathematics Ch. 6 Counting and Probability Instructor: Hayk Melikyan Today we will review sections 6.4,
Basic Counting. This Lecture We will study some basic rules for counting. Sum rule, product rule, generalized product rule Permutations, combinations.
Chapter 6 With Question/Answer Animations 1. Chapter Summary The Basics of Counting The Pigeonhole Principle Permutations and Combinations Binomial Coefficients.
Permutations and Combinations
March 10, 2015Applied Discrete Mathematics Week 6: Counting 1 Permutations and Combinations How many different sets of 3 people can we pick from a group.
2 Permutations and Combinations Lesson 8 HAND OUT REFERENCE SHEET AND GO OVER IT.
© The McGraw-Hill Companies, Inc., Chapter 4 Counting Techniques.
Permutations and Combinations
Unit 7 Permutation and Combination IT Disicipline ITD1111 Discrete Mathematics & Statistics STDTLP 1 Unit 7 Permutation and Combination.
Conditional Probability The probability that event B will occur given that A will occur (or has occurred) is denoted P(B|A) (read the probability of B.
Chapter 7 Logic, Sets, and Counting Section 4 Permutations and Combinations.
Simple Arrangements & Selections. Combinations & Permutations A permutation of n distinct objects is an arrangement, or ordering, of the n objects. An.
Barnett/Ziegler/Byleen Finite Mathematics 11e1 Learning Objectives for Section 7.4 Permutations and Combinations The student will be able to set up and.
Permutations and Combinations Section 2.2 & 2.3 Finite Math.
Counting Principles Multiplication rule Permutations Combinations.
Permutations and Combinations. 2 In this section, techniques will be introduced for counting the unordered selections of distinct objects and the ordered.
3.2 Combinations.
HAWKES LEARNING Students Count. Success Matters. Copyright © 2015 by Hawkes Learning/Quant Systems, Inc. All rights reserved. Section 7.2 Counting Our.
Section 1.3 Each arrangement (ordering) of n distinguishable objects is called a permutation, and the number of permutations of n distinguishable objects.
Copyright © Peter Cappello 2011 Simple Arrangements & Selections.
COUNTING Permutations and Combinations. 2Barnett/Ziegler/Byleen College Mathematics 12e Learning Objectives for Permutations and Combinations  The student.
Section Basic Counting Principles: The Product Rule The Product Rule: A procedure can be broken down into a sequence of two tasks. There are n 1.
Section The Pigeonhole Principle If a flock of 20 pigeons roosts in a set of 19 pigeonholes, one of the pigeonholes must have more than 1 pigeon.
6/9/2016MATH 106, Section 51 Section 5 Combinations Questions about homework? Submit homework!
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 4.5.
Section 6.3. Section Summary Permutations Combinations.
Permutations and Combinations
Permutations and Combinations
Unit 4 – Combinatorics and Probability Section 4
Permutation – The number of ways to ARRANGE ‘n’ items ‘r’ at
Basic Counting.
COUNTING AND PROBABILITY
Applied Combinatorics, 4th Ed. Alan Tucker
Presentation transcript:

Tucker, Applied Combinatorics1 SECTION 5.2 Simple Arrangements and Selections Aaron Desrochers and Ben Epstein

Tucker, Applied Combinatorics2 Vocabulary Permutation: an arrangement or ordering of n distinct objects. R-Permutation: an arrangement using r of n objects. P(n,r) denotes the r-permutation on n objects. In general, P(n,n) = n! Therefore, P(n,r) = n(n-1)(n-2)…[n-(r-1)] = n!/(n-r)!. So, P(6,2) = 6!/(6-2)! = 6!/4! = (6)(5)(4)(3)(2)(1) / (4)(3)(2)(1) = (6)(5) = 30. NOTE: P(n,n) = n! Since (n-n)! = 0! = 1. So, P(4,4) = 4! = 24.

Tucker, Applied Combinatorics3 Vocabulary Combination: an unordered arrangement of n objects. R-Combination: an unordered selection using r of n objects. C(n,r) denotes the r-combination of n objects. In general C(n,r) = n!/(r!(n-r)!). This is easily derived using P(n,r), since r- combinations of n objects gives the number of unordered arrangements, dividing P(n,r) by the total number of possible arrangements of n (so let r = n) gives the total number of unordered arrangements. So C(n,r) = P(n,r) / P(n,n) = n!/(r!(n-r)!). NOTE: A common notation for C(n,r) is. We say the combination of n choose r objects. nrnr

Tucker, Applied Combinatorics4 Example 1 How many 5-card hands can be formed from a standard 52- card deck? First we must ask will the hands be ordered or unordered. In this example lets suppose we want unordered 5-card hands. So it is simply C(52,5) = 52!/[5!(52-5)!] = (52)(51)(50)(49)(48) /5!= 2,598,960 hands.

Tucker, Applied Combinatorics5 Example 2 If a 5-card hand is chosen at random, what is the probability of obtaining a flush (all cards having the same suit)? In this case order does not matter, so we will use the notion of combinations. First, we must notice that there are 13 cards in every suit. Also, we have 4 suits to choose from, therefore (4)C(13,5) = 5148 ways to get a flush. The probability is found by dividing the number of ways of getting a flush by the total number of possible hands, which we computed in the last example. Therefore, the probability of a getting a flush is 5148/2,598,960 = or about.2%.

Tucker, Applied Combinatorics6 Example 3 A committee of k people is to be chosen from a set of 7 women and 4 men. How many ways are there to form a committee of 5 people, including 3 women and 2 men? We want 3 of the 7 women and 2 of the 4 men. There are 7 choose 3 ways of selecting the three women. There are 4 choose 2 ways of selecting the 2 men. The product of the two gives the total number of ways. C(4,2)C(7,3) =

Tucker, Applied Combinatorics7 Example 4 How many ways are there to form a committee of 4 people with at least two women members? The trick with this question is dealing with the at least part. This can be broken down as the sum of picking exactly 2 women + picking exactly 3 women + picking exactly 4 women. So, C(7,2)C(4,2) + C(7,3)C(4,1) + C(7,4)C(4,0) = This is equal to one

Tucker, Applied Combinatorics8 Example 5 The chromatic polynomial P k (G) of graph G is the polynomial in k that gives the number of k-colorings of G. What is the chromatic polynomial of: A complete graph K 5 on five vertices (all vertices adjacent to each other) In a complete graph, each vertex must be a different color. Thus, P k (K 5 ) = P(k,5), since there are k possible colors for the first vertex, k-1 for the second choice, k-2 for the third choice and so on. k k-1 k-2 k-3 k-4

Tucker, Applied Combinatorics9 P(k,5) = k!/(k-5)!=k(k-1)(k-2)(k-3)(k-4) Example 5 This is the chromatic polynomial.

Tucker, Applied Combinatorics10 Example 5 Continued b)Find P k ( C 4 ) where C 4 is a circuit of length 4? Let the vertices on the circuit C 4 be named a, b, c, d with edges (a,b), (b,c), (c,d) and (d,a). We break the computation of P k (C 4 ) into two cases, depending on whether or not a and c are given the same color. If a and c have the same color, there are k choices for the color of these two vertices. Then b and d each must only avoid the common color of a and c --- k-1color choices each. So the number of k-colorings of C 4 in this case is k(k-1)^2. If a and c have different colors, there are k(k-1) choices for the two different colors for a and then c. Now b and d each have k-2 color choices. So in this case the total number of k- colorings of C 4 is k(k-1)(k-2)^2. Combining the two cases, we obtain P k (C 4 ) = k(k-1)^2 + k(k-1)(k-2)^2. a c b d

Tucker, Applied Combinatorics11 Class Exercise 1 How many different 8-digit binary sequences are there with six 1s and two 0s? Consider that we have 8 slots to fill given these two conditions. Any six slots must be 1s so C(8,6) gives the number of ways to fill any six slots. Notice that we do not have to make any choices for the zeros because they must go in the last two slots. So the solution is C(8,6) = 28. It is important to note that the solution can be arrived at by selecting the slots for the zeros. In this case C(8,2) = 28. Note also that this is the compliment of C(8,6) and that they are equal. So in general C(n,r) = C(n,n-r).

Tucker, Applied Combinatorics12 Class Exercise 2 What is the probability that a 4-digit campus telephone number has 2 digits the same and the other two digits different? Again consider filling the slots, only in this case we need four of them. First we want to pick the slots. We need 2 slots to hold the pair of identical numbers. These slots can be chosen in C(4,2) ways. Note that we need not choose where the last two numbers will go because their positions are forced.

Tucker, Applied Combinatorics13 Next, we need to choose the actual numbers. Certainly we have 10 digits to choose from and we want just one for the identical pair so C(10,1) gives us the number of ways to choose any digit. For the third digit we must select any digit that is not the same as the first, so we have C(9,1). And similarly for the fourth C(8,1). The question asks for the probability so we must divide the product of all of these combinations by the total number of possible ordered 4-digit phone numbers. Using the slot method, we have 10 choices for the first slot, 10 for the second, 10 for the third and 10 for the fourth. So 10^4 gives us the total number of possible ordered phone numbers. The probability is then [C(4,2)C(10,1)C(9,1)C(8,1)] / 10^4, 54/125 =.432 = 43.2%