Lesson 7.2.2 A ratio is the comparison of two quantities by division. We also, learned about proportions. A proportion states that 2 ratios are equal.

Slides:



Advertisements
Similar presentations
Do Now 1.Susie earns 1/4 of a dollar for every 1/2 mile she runs in the race. How many miles does she need to run to earn a dollar? 2.Henry completes 1/6.
Advertisements

Do Now Nancy earns $180 in 20 hours. What is her unit rate of her earnings? William can pack 60 toys in 4 hours. What is his unit rate with which he packs.
Solving Fraction Equations by Multiplying
Unit 6 Math Test Review March 11, Represent the red part of the fraction bar as the product of a whole number and a unit fraction. 1/8 Answer:
Write Proportions. Sue needs 9 cups of flour to make 16 batches of cookies. How much flour does she need if she only wants to make a fourth of her recipe.
Jeopardy – Math – 5 th Review – Fractions Misc 1Misc 2Misc 3Misc 4Misc 5 Q $100 Q $200 Q $300 Q $400 Q $500 Q $100 Q $200 Q $300 Q $400 Q $500 Final Jeopardy.
SOLVING EQUATIONS WITH VARIABLES ON BOTH SIDES
4-4 Solving Proportions Warm Up Warm Up Lesson Presentation Lesson Presentation Problem of the Day Problem of the Day Lesson Quizzes Lesson Quizzes.
Solving Multiplication and Division Equations. EXAMPLE 1 Solving a Multiplication Equation Solve the equation 3x = x = 15 Check 3x = 45 3 (15)
A rate is a ratio of two quantities with different units, such as Rates are usually written as unit rates. A unit rate is a rate with a second.
Chapter 5 Ratios, Rates, Proportions
+ Cross Multiplication Objective: We will learn to use cross multiplication to solve a proportion. We will use cross multiplication to check whether two.
Solve Proportions.
Objectives: To solve proportions and write ratios.
Course Dividing Rational Numbers Warm Up Multiply – – –15 – (2.8) 4. –0.9(16.1) –14.49.
Ratio, Rate, Proportion, and Percent. Ratio  Comparison of two numbers by division  Can be written three different ways 4 to 9 4 :
4-4 Solving Proportions Vocabulary cross product.
Holt CA Course Solving Proportions NS1.3 Use proportions to solve problems (e.g., determine the value of N if =, find the length of a side of a polygon.
1-5 Solving Equations with Rational Numbers Warm Up Warm Up Lesson Presentation Lesson Presentation Problem of the Day Problem of the Day Lesson Quizzes.
Holt CA Course Solving Proportions NS1.3 Use proportions to solve problems (e.g., determine the value of N if =, find the length of a side of a polygon.
4-4 Solving Proportions Learn to solve proportions by using cross products.
Blizzard Bonus Math review. Ratio and Rates Proportion, an equation that stakes that 2 ratios are equal You cross multiply and if they.
Solve Proportional Relationships. CROSS PRODUCT RULE In the proportion =, the cross products, a · d and b · c are equal. abab cdcd EX 1) =
Ratios, Proportions and Similar Figures Ratios, proportions and scale drawings.
Today’s Agenda 1. Lesson: Proportions 2.Quiz 7 back 3.Homework.
Unit Goals – 1. Solve proportions and simplify ratios. 2. Apply ratios and proportions to solve word problems. 3. Recognize, determine, and apply scale.
Solving Proportions 4-3. Vocabulary Cross product- for two ratios, the product of the numerator in one ratio and the denominator in the other.
2-6 Solving Equations with Rational Numbers Warm Up Warm Up Lesson Presentation Lesson Presentation Problem of the Day Problem of the Day Lesson Quizzes.
1-5 Solving Equations with Rational Numbers Warm Up Warm Up Lesson Presentation Lesson Presentation Problem of the Day Problem of the Day Lesson Quizzes.
DIVIDING FRACTIONS!. Divide a whole number by a unit fraction.
Holt Algebra Rates, Ratios, and Proportions Warm Up Solve each equation. Check your answer. 1. 6x = m = y =18.4 Multiply. 6.7.
1. Simplify each side SOLVING EQUATIONS WITH VARIABLES ON BOTH SIDES 2. Get rid of variable on right side 3. Solve two step equation Get rid of parentheses,
3-4 HW: Pg #4-24e, 28-44eoe, 49-50,
Find two ratios that are equivalent to each given ratio , , , , Possible answers:
2.1 Rates, Ratios, and Proportions EQ: How can I use units to understand problems and guide the solution of proportions?
Ratio A ration is a comparison between two numbers. We generally separate the two numbers in the ratio with a colon(:). Suppose we want to write the ratio.
Multiplication and Division Fraction and Mixed Number Word Problems
Finding Proportions using Cross Multiplication
October 1, 2012 Ratios and Proportions
Bell Ringers Solve the following two step linear equations. Show your work. 1.
Lesson – Teacher Notes Standard:
Proportions An equation that states that two ratio are equal is called a proportion. These are proportions:
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
RATIOS and PROPORTIONS
Dividing Fractions Module 2
Chapter 3 Ratios and Rates
Warm Up Add or subtract –
Unit Rates with Fractions
Rates, Ratios, and Proportions
Rates, Ratios, and Proportions
Multiplying or Dividing 1-3
Ratios 4 Possible Ways to Write a Ratio #1
Rates (unit Rate) Ratio Solving
Lesson 6.1 How do you find ratios and unit rates?
3.6 Cross Products.
Altering the yield Why ? To change the quantity.
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Rates, Ratios, and Proportions
How do you use proportions to find unknown values?
Rates, Ratios, and Proportions
Rates, Ratios, and Proportions
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Multiplying and Dividing Fractions
Finding Proportions using Cross Multiplication
What is a “ratio”? How do you write a ratio?
Rates, Ratios, and Proportions
Rates, Ratios and Proportions
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Presentation transcript:

Lesson 7.2.2 A ratio is the comparison of two quantities by division. We also, learned about proportions. A proportion states that 2 ratios are equal. We learned that you can use cross multiplication to determine if 2 ratios are equal to each other. We also solved proportions that had a variable. Why learn? Proportions can be used to find missing numbers in a real world math problem. Later on in the third nine weeks we will see how proportions can be used to solve problems involving scale models and similar figures. Engineers use scale models to build high tech aircraft. If two figures are similar (same shape, but different size), a proportion can be used to find a missing side length on one of the shapes.

What do proportions have to do with food, distance, measurements, etc.?

Solving proportions with complex fractions Lesson 7.2.2: Solving proportions with complex fractions https://www.youtube.com/watch?v=Vrc_Z0a_nkY

Guided practice: dividing fractions YOU TRY #1 Lesson 7.2.2 GUIDED PRACTICE #1 3 5 3 4 1 2 5 6 9 10 1 1 5 Guided practice: dividing fractions Step 1: set up as a division problem Step 2: write the reciprocal of the second fraction (KCF) Step 3: solve as a multiplication problem.

= = 7 4 6 x 3 x 𝑥=20 𝑥=63 GUIDED PRACTICE #2 YOU TRY #2 3 5 7 4 = = 6 x 3 x 𝑥=20 𝑥=63 Guided practice Step 1: set up the proportion Step 2: cross multiply Step 3: Divide Step 4: Check answer.

= = x 6 9 4 x 6 𝑥=81 𝑥=42 YOU TRY #3 GUIDED PRACTICE #3 2 3 = 9 4 4 7 = x 6 𝑥=42 𝑥=81 Guided practice Step 1: set up the proportion Step 2: cross multiply Step 3: Divide Step 4: Check answer.

= = 3 x 6 x 𝑥=4 1 2 𝑥=7.5 YOU TRY #4 GUIDED PRACTICE #4 1 4 5 8 1 2 3 8 = = 3 x 6 x 𝑥=4 1 2 𝑥=7.5 Guided practice Step 1: set up the proportion Step 2: cross multiply Step 3: Divide Step 4: Check answer.

= = 2 x x 3 2 𝑥=3 1 3 𝑥=1 2 13 YOU TRY #5 GUIDED PRACTICE #5 5 7 2 3 2 x x = = 3 6 7 1 8 5 2 𝑥=3 1 3 𝑥=1 2 13 Guided practice Step 1: set up the proportion Step 2: cross multiply Step 3: Divide Step 4: Check answer.

Lesson 7.2.2 : Proportions with Complex Fractions For each problem below, do the following: • Set up a proportion by writing the original rate (including labels) as a ratio (in fraction form), and show that it is equal to the new rate, filling in the part of that rate that you know so far. • Show any calculations needed to find the missing value.

𝑥=8 19 28 𝑚𝑖 𝑥=1 1 3 cup GUIDED PRACTICE #6 YOU TRY #6 Jerry can run 3 3 8 miles in 1 1 6 of an hour. How far can he run in 3 hours? Sarah uses 1 3 4 cup of sugar and 2 1 3 cups of flour. If she uses 1 cup of Sugar, how much flour will she need? 𝑥=8 19 28 𝑚𝑖 𝑥=1 1 3 cup

𝑥=1.125 𝑥=328 mi 𝑥= 1 1 8 /𝑠𝑒𝑟𝑣𝑖𝑛𝑔 GUIDED PRACTICE #7 YOU TRY #7 Susan’s car will travel 246 miles on 3 4 of tank of gas. How far can she drive on a full tank of gas? Sharon made a large pot of spaghetti. 18 servings is 20 1 4 cups of spaghetti. How much is one serving? 𝑥=1.125 𝑥=328 mi 𝑥= 1 1 8 /𝑠𝑒𝑟𝑣𝑖𝑛𝑔

𝑥=3 in 𝑥=1 5 21 in GUIDED PRACTICE #8 YOU TRY #8 Pedro grew 4 1 3 inches during a 3 1 2 month growth spurt. If his growth spurt continued at the same rate how much did he grow in one month? During one winter snowstorm in Denver, Colorado, Jesse noted that 16 inches of snow fell in 5 1 3 hours. What was the rate of snowfall in one hour? 𝑥=3 in 𝑥=1 5 21 in

𝑥=4 15 29 mi 𝑥=6 cups GUIDED PRACTICE #9 YOU TRY #9 Brianna’s Chocolate Chip Cookie Recipe will make about 3 dozen chocolate chip cookies. The recipe calls for 2 1 4 cups of flour and 3 8 Cups of baking soda. If Brianna was to adjust the recipe to include 1 cup Of baking soda, how many cups of flour would she need to use? Mackenzie ran the Olympic marathon of 26 1 5 miles in a time of 5 4 5 hours. How Far did she run in 1 hour? 𝑥=4 15 29 mi 𝑥=6 cups

PRACTICE #1 PRACTICE #2 7 5 1 3 20 3 3 2 21 100 2 9

PRACTICE #3 PRACTICE #4 4 1 2 5 7 9 3 3 8 6 3 7 1 1 3

𝑥=296𝑚𝑖 𝑥= 3 8 Tbs. PRACTICE # 5 PRACTICE #6 If Mark uses 3 3 4 tablespoon of coffee to make10 cups of coffee, how much would he need to make on cup of coffee? Tiana’s car traveled 111 miles on 3 8 of a tank of gas. How far will she be able to go on a full tank of gas? 𝑥=296𝑚𝑖 𝑥= 3 8 Tbs.

𝑥= 9 10 cup 𝑥= 1 2 pizza PRACTICE #7 PRACTICE #8 The drama club ordered 15 pizzas for the cast party. If the 25 members ate 12 1 2 pizzas out of the 15. How much pizza did each cast member eat? Ben’s 6 bird feeders hold 5 2 5 cups of bird feed. How much will one bird feed hold? 𝑥= 9 10 cup 𝑥= 1 2 pizza

𝑥=2 1 6 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 𝑥=2 8 15 cups PRACTICE #9 PRACTICE #10 Hudson made 2 1 2 portions of slime. He used 6 1 3 cups of glue. How much glue would it take to make one portion of slime? A cookie factory made 6 1 2 batches of cookies in 3 hours. How many batches can they make in 1 hour? 𝑥=2 1 6 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 𝑥=2 8 15 cups

𝑥=1 4 5 cup PRACTICE #11 PRACTICE #12 A suggested planting rate for wildflower seeds is 1 2 pound per 1 8 acre. What is the unit rate in pounds per acre? Hadley is cooking a second dinner. This time the recipe calls for 3 5 cups of flour for every 1 3 cups of sugar. How much flour is required for every cup of sugar? 𝑥=4 𝑙𝑏𝑠/𝑎𝑐𝑟𝑒 𝑥=1 4 5 cup