M. Hufeland, M. Schünke, A.J. Grodzinsky, J. Imgenberg, B. Kurz 

Slides:



Advertisements
Similar presentations
Early intervention with Interleukin-1 Receptor Antagonist Protein modulates catabolic microRNA and mRNA expression in cartilage after impact injury  A.A.
Advertisements

Variations in matrix composition and GAG fine structure among scaffolds for cartilage tissue engineering  J.K. Mouw, M.S., N.D. Case, Ph.D., R.E. Guldberg,
Moderate dynamic compression inhibits pro-catabolic response of cartilage to mechanical injury, tumor necrosis factor-α and interleukin-6, but accentuates.
Degradable hydrogel scaffolds for in vivo delivery of single and dual growth factors in cartilage repair  T.A. Holland, Ph.D., E.W.H. Bodde, M.D., V.M.J.I.
Expression of superficial zone protein in mandibular condyle cartilage
IL-10 reduces apoptosis and extracellular matrix degradation after injurious compression of mature articular cartilage  P. Behrendt, A. Preusse-Prange,
The beneficial effect of delayed compressive loading on tissue-engineered cartilage constructs cultured with TGF-β3  E.G. Lima, M.Phil., M.S., L. Bian,
Potential roles of cytokines and chemokines in human intervertebral disc degeneration: interleukin-1 is a master regulator of catabolic processes  K.L.E.
Combination of ADMSCs and chondrocytes reduces hypertrophy and improves the functional properties of osteoarthritic cartilage  M.R. Ahmed, A. Mehmood,
Early intervention with Interleukin-1 Receptor Antagonist Protein modulates catabolic microRNA and mRNA expression in cartilage after impact injury  A.A.
M. Z. Ilic, Ph. D. , B. Martinac, Ph. D. , T. Samiric, Ph. D. , C. J
Chondroprotective effect of the bioactive peptide prolyl-hydroxyproline in mouse articular cartilage in vitro and in vivo  S. Nakatani, H. Mano, C. Sampei,
B. Mohanraj, G.R. Meloni, R.L. Mauck, G.R. Dodge 
Histone deacetylase inhibitors suppress interleukin-1β-induced nitric oxide and prostaglandin E2 production in human chondrocytes  N. Chabane, M.Sc.,
Mechanical loading regimes affect the anabolic and catabolic activities by chondrocytes encapsulated in PEG hydrogels  G.D. Nicodemus, S.J. Bryant  Osteoarthritis.
Relative contribution of matrix metalloprotease and cysteine protease activities to cytokine-stimulated articular cartilage degradation  B.C. Sondergaard,
A review of the effects of insulin-like growth factor and platelet derived growth factor on in vivo cartilage healing and repair  M.B. Schmidt, Ph.D.,
Chondroprotective effect of the bioactive peptide prolyl-hydroxyproline in mouse articular cartilage in vitro and in vivo  S. Nakatani, H. Mano, C. Sampei,
Differential expression of leptin and leptin's receptor isoform (Ob-Rb) mRNA between advanced and minimally affected osteoarthritic cartilage; effect.
Osteoarthritis as a disease of mechanics
S. Varghese, Ph. D. , P. Theprungsirikul, B. S. , S. Sahani, B. S. , N
Hypoxic chondrogenic differentiation of human embryonic stem cells enhances cartilage protein synthesis and biomechanical functionality  E.J. Koay, Ph.D.,
Zonal differences in meniscus matrix turnover and cytokine response
R. Sommaggio, M. Pérez-Cruz, J.L. Brokaw, R. Máñez, C. Costa 
Osteoarthritis in a dish: the effects of pro-inflammatory cytokines on cartilage derived from induced pluripotent stem cells  V.P. Willard, B.O. Diekman,
Decreased proteoglycan degradation in IL-1β-treated cartilage co-cultured with TIMP-3- transduced cells  J. Mason, A. Donahue, A. Yoskowitz, D. Richardson 
Temporal expression and tissue distribution of interleukin-1β in two strains of guinea pigs with varying propensity for spontaneous knee osteoarthritis 
Interleukin-1β and interleukin-6 disturb the antioxidant enzyme system in bovine chondrocytes: a possible explanation for oxidative stress generation 
P.A. Torzilli, M. Bhargava, S. Park, C.T.C. Chen 
Intra-individual comparison of human ankle and knee chondrocytes in vitro: relevance for talar cartilage repair  C. Candrian, M.D., E. Bonacina, B.Sc.,
Adjacent tissues (cartilage, bone) affect the functional integration of engineered calf cartilage in vitro  E. Tognana, Ph.D., F. Chen, M.D., R.F. Padera,
The differences on extracellular matrix among each portion of meniscus
Osteoarthritis pain mechanisms: basic studies in animal models
A.W. Palmer, C.G. Wilson, E.J. Baum, M.E. Levenston 
Photo-crosslinked alginate hydrogels support enhanced matrix accumulation by nucleus pulposus cells in vivo  A.I. Chou, S.O. Akintoye, S.B. Nicoll  Osteoarthritis.
S.M. Hosseini, M.B. Veldink, K. Ito, C.C. van Donkelaar 
The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading  R.L. Mauck, C.C-B. Wang, E.S.
Characterization of pro-apoptotic and matrix-degradative gene expression following induction of osteoarthritis in mature and aged rabbits  Dr. C.M. Robertson,
Enhancing and maintaining chondrogenesis of synovial fibroblasts by cartilage extracellular matrix protein matrilins  M. Pei, M.D., Ph.D., J. Luo, M.D.,
Resistin is elevated following traumatic joint injury and causes matrix degradation and release of inflammatory cytokines from articular cartilage in.
A stable isotope method for the simultaneous measurement of matrix synthesis and cell proliferation in articular cartilage in vivo  K.W. Li, S.A. Siraj,
Dr J. Deschner, D. M. D. , Ph. D. , Dr B. Rath-Deschner, D. M. D. , Ph
Pharmaceutical nanocarrier association with chondrocytes and cartilage explants: influence of surface modification and extracellular matrix depletion 
Expression of the PTH/PTHrP receptor in chondrogenic cells during the repair of full- thickness defects of articular cartilage  H. Mizuta, M.D., Ph.D.,
Glucosamine and chondroitin sulfate: biological response modifiers of chondrocytes under simulated conditions of joint stress  L Lippiello  Osteoarthritis.
V. Morel, Ph.D., A. Merçay, M.Sc., T.M. Quinn, Ph.D. 
Intra-articular injection of interleukin-4 decreases nitric oxide production by chondrocytes and ameliorates subsequent destruction of cartilage in instability-induced.
A.L. McNulty, B.T. Estes, R.E. Wilusz, J.B. Weinberg, F. Guilak 
A graphic user interface for the evaluation of knee osteoarthritis (GEKO): an open- source tool for histological grading  H.E. Kloefkorn, B.Y. Jacobs,
Mevastatin reduces cartilage degradation in rabbit experimental osteoarthritis through inhibition of synovial inflammation  Y. Akasaki, M.D., S. Matsuda,
Scaffold degradation elevates the collagen content and dynamic compressive modulus in engineered articular cartilage  K.W. Ng, Ph.D., L.E. Kugler, B.S.,
First insights into human acetabular labrum cell metabolism
Effect of a glucosamine derivative on impact-induced chondrocyte apoptosis in vitro. A preliminary report  C.A.M. Huser, Ph.D., M.E. Davies, Ph.D.  Osteoarthritis.
R. L. Trevino, C. A. Pacione, S. Chubinskaya, A. -M. Malfait, M. A
Analysis of ADAMTS4 and MT4-MMP indicates that both are involved in aggrecanolysis in interleukin-1-treated bovine cartilage  P. Patwari, G. Gao, J.H.
Cartilage growth and remodeling: modulation of balance between proteoglycan and collagen network in vitro with β-aminopropionitrile  A. Asanbaeva, Ph.D.,
Tissue engineering with meniscus cells derived from surgical debris
B. Zielinska, M. Killian, M. Kadmiel, M. Nelsen, T.L. Haut Donahue 
Estrogen reduces mechanical injury-related cell death and proteoglycan degradation in mature articular cartilage independent of the presence of the superficial.
A.R. Tan, E.Y. Dong, G.A. Ateshian, C.T. Hung 
Dynamic compression of single cells
Osteoarthritis year 2012 in review: biology
Mitoprotection as a strategy to prevent chondrocyte death and cartilage degeneration following mechanical injury  M.L. Delco, E.D. Bonnevie, H.H. Szeto,
J.F. Nishimuta, M.E. Levenston  Osteoarthritis and Cartilage 
Inhibition of adenosine kinase attenuates interleukin-1- and lipopolysaccharide-induced alterations in articular cartilage metabolism  Raina Petrov, B.S.,
Peroxisome proliferator activated receptor alpha activation decreases inflammatory and destructive responses in osteoarthritic cartilage  S. Clockaerts,
Expression of superficial zone protein in mandibular condyle cartilage
Effects of physical stimulation with electromagnetic field and insulin growth factor-I treatment on proteoglycan synthesis of bovine articular cartilage 
Central and peripheral region tibial plateau chondrocytes respond differently to in vitro dynamic compression  S.L. Bevill, P.L. Briant, M.E. Levenston,
General Information Osteoarthritis and Cartilage
Presentation transcript:

Response of mature meniscal tissue to a single injurious compression and interleukin-1 in vitro  M. Hufeland, M. Schünke, A.J. Grodzinsky, J. Imgenberg, B. Kurz  Osteoarthritis and Cartilage  Volume 21, Issue 1, Pages 209-216 (January 2013) DOI: 10.1016/j.joca.2012.10.003 Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 Individual meniscal explants (thickness about 1 mm) were compressed by a single load (1 mm/s) using different strains (25–75%); stress was recorded during compression. (A) Examples of three stress response curves with 25, 50, and 75% strain, respectively. (B) Mean peak stresses depending on the strain of compression. Mean values + s.e.m., 25% (n = 37), 50% (n = 47) and 75% (n = 15); different letters indicate significant differences (P < 0.05). Osteoarthritis and Cartilage 2013 21, 209-216DOI: (10.1016/j.joca.2012.10.003) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Accumulated GAG release and NO production 3 days after a single compression (strain rate 1 mm/s; strain 25, 50 or 75%) and/or incubation with IL-1 (10 ng/ml). (A) GAG release depending on the strain of compression. (B) GAG release depending on compression and/or IL-1 incubation. (C) NO release depending on the strain of compression. (D) NO release depending on compression and/or IL-1 incubation. Mean values + s.e.m.; n = 15 (A, C, D) or 19 (B) from 3 (A, C, D) or 4 (B) independent experiments, respectively. Different letters indicate significant differences (P < 0.05), similar letters indicate homogenous groups. Osteoarthritis and Cartilage 2013 21, 209-216DOI: (10.1016/j.joca.2012.10.003) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 mRNA levels of matrix-degrading enzymes 3 days after a single compression (strain rate 1 mm/s; strain 25, 50 or 75%) and/or incubation with IL-1 (10 ng/ml). (A) mRNA levels depending on the strain of compression. (B) mRNA levels depending on compression and/or IL-1 incubation. mRNA levels are normalized to control tissue = 1 (ΔΔCT method). Mean values + s.e.m. (n = 3 independent experiments). Osteoarthritis and Cartilage 2013 21, 209-216DOI: (10.1016/j.joca.2012.10.003) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Accumulated LDH release and relative number of cells with CN 3 days after a single compression (strain rate 1 mm/s; strain 25, 50 or 75%) and/or incubation with IL-1 (10 ng/ml). (A) LDH release depending on the strain of compression. (B) LDH release depending on compression and/or IL-1 incubation. (C) Example of a histological section from a meniscal explant after a compression with 75% strain, showing normal nuclei and CN. Mayer's hematoxylin staining; bar = 50 μm. (D) Relative number of cells with CN depending on compression and/or IL-1-treatment. Mean values + s.e.m.; n = 15 (A, B) or 5 (D). Different letters indicate significant differences (P < 0.05), similar letters indicate homogenous groups. Osteoarthritis and Cartilage 2013 21, 209-216DOI: (10.1016/j.joca.2012.10.003) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions