Volume 82, Issue 3, Pages (May 2014)

Slides:



Advertisements
Similar presentations
Carolina Borges-Merjane, Laurence O. Trussell  Neuron 
Advertisements

Sami Boudkkazi, Aline Brechet, Jochen Schwenk, Bernd Fakler  Neuron 
Christian Rosenmund, Charles F Stevens  Neuron 
Jason R. Chalifoux, Adam G. Carter  Neuron 
Polarity of Long-Term Synaptic Gain Change Is Related to Postsynaptic Spike Firing at a Cerebellar Inhibitory Synapse  Carlos D Aizenman, Paul B Manis,
Volume 77, Issue 6, Pages (March 2013)
Volume 52, Issue 3, Pages (November 2006)
Endocannabinoids Control the Induction of Cerebellar LTD
Burst-Timing-Dependent Plasticity of NMDA Receptor-Mediated Transmission in Midbrain Dopamine Neurons  Mark T. Harnett, Brian E. Bernier, Kee-Chan Ahn,
Role of Glutamate Autoreceptors at Hippocampal Mossy Fiber Synapses
Dense Inhibitory Connectivity in Neocortex
Volume 84, Issue 4, Pages (November 2014)
Volume 81, Issue 4, Pages (February 2014)
Essential Role of Presynaptic NMDA Receptors in Activity-Dependent BDNF Secretion and Corticostriatal LTP  Hyungju Park, Andrei Popescu, Mu-ming Poo 
Retrograde Inhibition of Presynaptic Calcium Influx by Endogenous Cannabinoids at Excitatory Synapses onto Purkinje Cells  Anatol C Kreitzer, Wade G Regehr 
Long-Term Depression of mGluR1 Signaling
First Node of Ranvier Facilitates High-Frequency Burst Encoding
Volume 85, Issue 2, Pages (January 2015)
Michiel Coesmans, John T. Weber, Chris I. De Zeeuw, Christian Hansel 
Kristian Wadel, Erwin Neher, Takeshi Sakaba  Neuron 
Carolina Borges-Merjane, Laurence O. Trussell  Neuron 
Leslie R. Whitaker, Mickael Degoulet, Hitoshi Morikawa  Neuron 
Spontaneous Activity Drives Local Synaptic Plasticity In Vivo
Rebecca S. Jones, Reed C. Carroll, Scott Nawy  Neuron 
Spike Timing-Dependent LTP/LTD Mediates Visual Experience-Dependent Plasticity in a Developing Retinotectal System  Yangling Mu, Mu-ming Poo  Neuron 
Nobutake Hosoi, Matthew Holt, Takeshi Sakaba  Neuron 
SK2 Channel Modulation Contributes to Compartment-Specific Dendritic Plasticity in Cerebellar Purkinje Cells  Gen Ohtsuki, Claire Piochon, John P. Adelman,
Volume 68, Issue 5, Pages (December 2010)
Anatol C Kreitzer, Adam G Carter, Wade G Regehr  Neuron 
High-Density Presynaptic Transporters Are Required for Glutamate Removal from the First Visual Synapse  Jun Hasegawa, Takehisa Obara, Kohichi Tanaka,
Differential Expression of Posttetanic Potentiation and Retrograde Signaling Mediate Target-Dependent Short-Term Synaptic Plasticity  Michael Beierlein,
Christine Grienberger, Xiaowei Chen, Arthur Konnerth  Neuron 
Volume 8, Issue 4, Pages (August 2014)
Plasticity of Burst Firing Induced by Synergistic Activation of Metabotropic Glutamate and Acetylcholine Receptors  Shannon J. Moore, Donald C. Cooper,
Dario Brambilla, David Chapman, Robert Greene  Neuron 
Volume 31, Issue 3, Pages (August 2001)
Volume 91, Issue 6, Pages (September 2016)
Functional Differentiation of Multiple Climbing Fiber Inputs during Synapse Elimination in the Developing Cerebellum  Kouichi Hashimoto, Masanobu Kano 
Endocannabinoids Mediate Neuron-Astrocyte Communication
Volume 16, Issue 3, Pages (March 1996)
A Novel Form of Local Plasticity in Tuft Dendrites of Neocortical Somatosensory Layer 5 Pyramidal Neurons  Maya Sandler, Yoav Shulman, Jackie Schiller 
Volume 52, Issue 4, Pages (November 2006)
Jeffrey A. Dzubay, Thomas S. Otis  Neuron 
Stephan D. Brenowitz, Wade G. Regehr  Neuron 
Noradrenergic Control of Associative Synaptic Plasticity by Selective Modulation of Instructive Signals  Megan R. Carey, Wade G. Regehr  Neuron  Volume.
Volume 62, Issue 2, Pages (April 2009)
Essential Role of Presynaptic NMDA Receptors in Activity-Dependent BDNF Secretion and Corticostriatal LTP  Hyungju Park, Andrei Popescu, Mu-ming Poo 
Dual Dopaminergic Regulation of Corticostriatal Plasticity by Cholinergic Interneurons and Indirect Pathway Medium Spiny Neurons  Shana M. Augustin, Jessica.
Tiago Branco, Kevin Staras, Kevin J. Darcy, Yukiko Goda  Neuron 
Marta Navarrete, Alfonso Araque  Neuron 
Stephanie Rudolph, Linda Overstreet-Wadiche, Jacques I. Wadiche  Neuron 
Encoding of Oscillations by Axonal Bursts in Inferior Olive Neurons
Volume 57, Issue 3, Pages (February 2008)
Volume 1, Issue 5, Pages (May 2012)
Volume 64, Issue 3, Pages (November 2009)
Volume 78, Issue 3, Pages (May 2013)
Xiaowei Chen, Nathalie L. Rochefort, Bert Sakmann, Arthur Konnerth 
Christian Rosenmund, Charles F Stevens  Neuron 
Volume 45, Issue 2, Pages (January 2005)
Hiroto Takahashi, Jeffrey C. Magee  Neuron 
Burst-Timing-Dependent Plasticity of NMDA Receptor-Mediated Transmission in Midbrain Dopamine Neurons  Mark T. Harnett, Brian E. Bernier, Kee-Chan Ahn,
Kinetics of Synaptic Vesicle Refilling with Neurotransmitter Glutamate
Volume 57, Issue 3, Pages (February 2008)
Volume 57, Issue 6, Pages (March 2008)
Christian Hansel, David J. Linden  Neuron 
Nicole Calakos, Susanne Schoch, Thomas C. Südhof, Robert C. Malenka 
Visualization of IP3 Dynamics Reveals a Novel AMPA Receptor-Triggered IP3 Production Pathway Mediated by Voltage-Dependent Ca2+ Influx in Purkinje Cells 
Volume 50, Issue 4, Pages (May 2006)
Volume 54, Issue 1, Pages (April 2007)
Sami Boudkkazi, Aline Brechet, Jochen Schwenk, Bernd Fakler  Neuron 
Presentation transcript:

Volume 82, Issue 3, Pages 635-644 (May 2014) STIM1 Controls Neuronal Ca2+ Signaling, mGluR1-Dependent Synaptic Transmission, and Cerebellar Motor Behavior  Jana Hartmann, Rosa M. Karl, Ryan P.D. Alexander, Helmuth Adelsberger, Monika S. Brill, Charlotta Rühlmann, Anna Ansel, Kenji Sakimura, Yoshihiro Baba, Tomohiro Kurosaki, Thomas Misgeld, Arthur Konnerth  Neuron  Volume 82, Issue 3, Pages 635-644 (May 2014) DOI: 10.1016/j.neuron.2014.03.027 Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 1 Expression Patterns of Stim1/2 in the Cerebellum and Single PNs (A) Agarose gel electrophoresis of the Stim1 (top) and Stim2 (bottom) amplicons from single PN somata (left) and from the surrounding neuropil (right). The gene-specific standard (500 copies) was used as a positive control. (B) Copy numbers of Stim1 and Stim2 mRNA detected in 1 ng total RNA of mouse cerebellum. (C) Real-time monitoring of the fluorescence emission of SYBR Green I during the PCR amplification of Stim1 (left) and Stim2 (middle) cDNA from single PNs. Right: copy numbers of transcripts of Stim1/2 in single PNs. (D) Confocal images of the cerebellum stained for Calbindin D28k (green, left) and for STIM1 (red, middle). Right: merged images (ML, molecular layer; PNL, PN layer; GL, granular layer). Values are shown as mean ± SEM. ∗p < 0.05; ∗∗ p < 0.01 by t test. Neuron 2014 82, 635-644DOI: (10.1016/j.neuron.2014.03.027) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 2 Characterization of the PN-Specific STIM1 Knockout Mouse Line (A) Confocal images of a STIM1pko cerebellum stained for Calbindin D28k (green, left) and for STIM1 (red, middle). Right: merged images. (B) Left: percentage of steps with hindpaw slips during runs on an elevated horizontal beam (n = 4 mice per genotype). Right: time spent on the accelerating rotarod for control (n = 4) and STIM1pko mice (n = 8). (C) Left: blockade of parallel fiber-evoked fast EPSC in a STIM1pko mouse by CNQX (40 μM). Right: summary graph of EPSC blockade by CNQX (n = 3 PNs). (D) Mean decay time constants derived from monoexponential fits to EPSC time courses in control (n = 54 EPSCs in 11 inputs, 3 PNs) and STIM1pko mice (n = 60 EPSCs in 15 inputs, 4 PNs). (E) Superposition of paired parallel fiber EPSCs evoked at intervals of 50, 100, 200, and 500 ms in a control (top) and a STIM1pko mouse (bottom). Right: degree of paired pulse facilitation as a function of interstimulus interval (ISI) in control (n = 7 PNs) and STIM1pko (n = 14 PNs) mice. Values are shown as mean ± SEM. ∗p < 0.05; ∗∗ p < 0.01 by t test. Here, and in all of the following figures, traces and bar graphs from control mice are in blue, and those from STIM1pko mice are in red. Neuron 2014 82, 635-644DOI: (10.1016/j.neuron.2014.03.027) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 3 mGluR1-Mediated Synaptic Signaling in the Absence of STIM1 (A) Synaptic responses evoked by short high-frequency parallel-fiber bursts (five pulses, 200 Hz), with 10 V (left) and 25 V (right) stimulation strength, in the presence of 10 μM CNQX in control mice. Top traces: relative changes in OGB1 fluorescence (ΔF/F). Bottom traces: somatically recorded EPSCs. The circled numbers indicate the following components: (1) AMPAR-dependent fast EPSC (fEPSC); (2) mGluR1/TRPC3-dependent slow EPSC (sEPSC); (3) AMPAR-dependent early Ca2+-signal; and (4) mGluR1-dependent slow Ca2+-signal. (B) Similar experiment performed with a STIM1pko mouse. (C) Summary results: Left: mean ratio of sEPSC and fEPSC amplitudes (control mice: 37 ± 7, for 10 V, 32 ± 8 for 25 V; STIM1pko mice: 1 ± 1 for 10 V, 6 ± 5 for 25 V). Middle: mean amplitude of the delayed mGluR-mediated component of relative fluorescence changes (control mice: 87% ± 7% for 10 V, 104% ± 16% for 25 V; STIM1pko mice: 2% ± 1% for 10 V, 9% ± 9% for 25 V). Right: mean amplitude of the fast AMPAR-mediated component of relative fluorescence changes (ΔF/FAMPAR) normalized to the corresponding fEPSC amplitudes (control mice: 0.048 ± 0.011; STIM1pko mice: 0.018). Values are shown as mean ± SEM. ∗p < 0.05; ∗∗ p < 0.001 by t test. Neuron 2014 82, 635-644DOI: (10.1016/j.neuron.2014.03.027) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 4 Ca2+ Release from Dendritic ER Ca2+ Stores Is Abolished in the Absence of STIM1 (A) PN responses to local dendritic puff application of the group I mGluR-agonist DHPG (200 μM;10 psi, 50 ms) in a control (blue, left) and a STIM1pko mouse (red, right). Top traces: relative changes in OGB1 fluorescence (ΔF/F). Bottom traces: somatically recorded DHPG-evoked inward current (IDHPG). (B) Summary of the experiments shown in (A). Top: mean amplitudes of relative OGB1 fluorescence changes (ΔF/F; 134% ± 19 % in control mice; 20% ± 10 % in STIM1pko mice). Bottom: mean amplitudes of IDHPG (103 ± 33 in control mice; 17% ± 8 % in STIM1pko mice). (C) Relative changes in OGB1 fluorescence (ΔF/F) in response to local dendritic photolysis of caged IP3 in a control mouse (blue, left) and a STIM1pko mouse (red, right). The brightness artifacts measured during the UV light pulses (10 ms, 375 nm) were omitted from the traces. (D) Bar graph illustrates mean amplitudes of local Ca2+ transients recorded in dendrites following photolytic release of IP3 (116% ± 13 % in control mice; 2% ± 2% in STIM1pko mice). (E) Relative changes in OGB1 fluorescence (ΔF/F) in response to local puff application of caffeine (80 mM, 2 s, 5 psi) in a control mouse (blue, left) and a STIM1pko mouse (red, right). Please note that the presence of DHPG (A) and caffeine (E) in the slice exceeds the duration of the pressure pulse by ca. 0.5–1 s. (F) Bar graph demonstrating mean amplitudes of Ca2+ transients evoked by local caffeine applications depicted in (C) (73% ± 7% in control mice; 19% ± 8% in STIM1pko mice). Values are shown as mean ± SEM. ∗p < 0.05; ∗∗ p < 0.001 by t test. Neuron 2014 82, 635-644DOI: (10.1016/j.neuron.2014.03.027) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 5 STIM1 Required for Refilling of Dendritic Ca2+ Stores in PNs Held at Resting Potential, −70 mV (A) Top: color-coded confocal images of the dendritic field of a whole-cell clamped PN in a control mouse. Bottom: calcium transient evoked by local puffs of DHPG (200 μM, 50 ms, 10 psi). From left to right: test stimulation with DHPG in ACSF containing 2 mM Ca2+ (test, schematic pipette indicates the site of application), followed by DHPG-evoked responses in Ca2+-free ACSF at times indicated in each panel. (B) Similar experiment performed in a STIM1pko mouse. (C) Mean amplitude of DHPG-evoked Ca2+ transients plotted against time after return to Ca2+ containing ACSF for control (blue) and STIM1pko mice (red). Values are shown as mean ± SEM. The mean amplitudes (ΔF/F) of DHPG-evoked Ca2+ transients recorded before perfusion in Ca2+-free ACSF were 222% ± 25% (n = 12 PNs) in control and 20% ± 20% (n = 5 PNs) in STIMpko mice. Neuron 2014 82, 635-644DOI: (10.1016/j.neuron.2014.03.027) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 6 STIM1-Independent, Depolarization-Induced Supercharging of Ca2+ Stores and Ca2+ Dependence of TRPC3-Mediated Currents (A) Ca2+ transients and simultaneously recorded inward currents in a PN from a control mouse in response to locally applied DHPG (200 μM, 50 ms) before and at two time points (4 and 368 s, respectively) after a depolarizing pulse (1 s, from −70 to 0 mV). (B) Similar experiment performed in a PN from a STIM1pko mouse. Note the transient rescue of both the Ca2+ signal and the inward current at short intervals (4 s) after the depolarizing pulse. (C) Left: summary graph of mean amplitudes of fluorescence signals before (1) and 4 s (2) and >300 s (3) after depolarization in control (blue; 229% ± 27% [1], 320% ± 23% [2], 214% ± 31% [3]; n = 11 PNs) and STIM1pko (red; 47% ± 13 % [1], 150% ± 10% [2], 34% ± 8% [3]; n = 20 PNs) mice. Middle: summary graph of mean amplitudes of inward currents at the same time points in control (blue; 312 ± 80 pA [1], 357 ± 69 pA [2], 226 ± 56 pA [3]; n = 11 PNs) and STIM1pko (red; 5 ± 2 pA [1], 85 ± 20 pA [2], 10 ± 7 pA [3]; n = 13 PNs) mice. Right: bar graph showing mean fluorescence amplitudes associated with 1 s depolarization to 0 mV in the corresponding PNs (control mice: 210% ± 26%, n = 11 PNs; STIM1pko mice: 158% ± 21%, n = 20 PNs). Values are shown as mean ± SEM. ∗p < 0.05; ∗∗ p < 0.001 by Dunnett’s test using amplitudes obtained before depolarization as controls. Neuron 2014 82, 635-644DOI: (10.1016/j.neuron.2014.03.027) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 7 Schematic Representation of the Actions of STIM1 in Cerebellar Purkinje Neurons Neuron 2014 82, 635-644DOI: (10.1016/j.neuron.2014.03.027) Copyright © 2014 Elsevier Inc. Terms and Conditions