Giant Unilamellar Vesicles Electroformed from Native Membranes and Organic Lipid Mixtures under Physiological Conditions  L.-Ruth Montes, Alicia Alonso,

Slides:



Advertisements
Similar presentations
The Dynamics and Mechanics of Endothelial Cell Spreading Cynthia A. Reinhart-King, Micah Dembo, Daniel A. Hammer Biophysical Journal Volume 89, Issue 1,
Advertisements

Thermal Fluctuations of Red Blood Cell Membrane via a Constant-Area Particle- Dynamics Model Gianluca Marcelli, Kim H. Parker, C. Peter Winlove Biophysical.
Mesoscale Simulation of Blood Flow in Small Vessels Prosenjit Bagchi Biophysical Journal Volume 92, Issue 6, Pages (March 2007) DOI: /biophysj
Agarose-Dextran Gels as Synthetic Analogs of Glomerular Basement Membrane: Water Permeability Jeffrey A. White, William M. Deen Biophysical Journal Volume.
Volume 94, Issue 8, Pages L67-L69 (April 2008)
Voltage Dependence of Proton Pumping by Bacteriorhodopsin Is Regulated by the Voltage-Sensitive Ratio of M1 to M2  G. Nagel, B. Kelety, B. Möckel, G.
Volume 88, Issue 2, Pages (February 2005)
Interaction of LL-37 with Model Membrane Systems of Different Complexity: Influence of the Lipid Matrix  E. Sevcsik, G. Pabst, W. Richter, S. Danner,
Ewa K. Krasnowska, Enrico Gratton, Tiziana Parasassi 
Multi-Image Colocalization and Its Statistical Significance
Laurdan Fluorescence Lifetime Discriminates Cholesterol Content from Changes in Fluidity in Living Cell Membranes  Ottavia Golfetto, Elizabeth Hinde,
Quantitative Coherent Anti-Stokes Raman Scattering Imaging of Lipid Distribution in Coexisting Domains  Li Li, Haifeng Wang, Ji-Xin Cheng  Biophysical.
Effect of Trehalose on a Phospholipid Membrane under Mechanical Stress
Volume 110, Issue 3, Pages (February 2016)
Volume 97, Issue 5, Pages (September 2009)
Insertion of Alzheimer’s Aβ40 Peptide into Lipid Monolayers
Jakubs Kubiak, Jonathan Brewer, Søren Hansen, Luis A. Bagatolli 
Volume 93, Issue 10, Pages (November 2007)
Volume 93, Issue 8, Pages (October 2007)
Physical Properties of Escherichia coli Spheroplast Membranes
Composition Fluctuations in Lipid Bilayers
Raibatak Das, Stephanie Hammond, David Holowka, Barbara Baird 
Volume 91, Issue 5, Pages (September 2006)
Joseph M. Johnson, William J. Betz  Biophysical Journal 
Pulsatile Lipid Vesicles under Osmotic Stress
Volume 103, Issue 4, Pages (August 2012)
Volume 87, Issue 1, Pages (July 2004)
Volume 107, Issue 12, Pages (December 2014)
Experimental and Computational Studies Investigating Trehalose Protection of HepG2 Cells from Palmitate-Induced Toxicity  Sukit Leekumjorn, Yifei Wu,
Agata Witkowska, Reinhard Jahn  Biophysical Journal 
Volume 113, Issue 6, Pages (September 2017)
Volume 107, Issue 6, Pages (September 2014)
Volume 109, Issue 5, Pages (September 2015)
Fiber-Dependent and -Independent Toxicity of Islet Amyloid Polypeptide
Giant Unilamellar Vesicles Formed by Hybrid Films of Agarose and Lipids Display Altered Mechanical Properties  Rafael B. Lira, Rumiana Dimova, Karin A.
Volume 88, Issue 1, Pages (January 2005)
Gel-Assisted Formation of Giant Unilamellar Vesicles
Volume 93, Issue 2, Pages (July 2007)
Role of Cholesterol in the Formation and Nature of Lipid Rafts in Planar and Spherical Model Membranes  Jonathan M. Crane, Lukas K. Tamm  Biophysical.
Senthil Arumugam, Eugene P. Petrov, Petra Schwille  Biophysical Journal 
Direct Visualization of Lipid Domains in Human Skin Stratum Corneum's Lipid Membranes: Effect of pH and Temperature  I. Plasencia, L. Norlén, L.A. Bagatolli 
DNA Nanostructures on Membranes as Tools for Synthetic Biology
Volume 106, Issue 3, Pages (February 2014)
Lipid Headgroups Modulate Membrane Insertion of pHLIP Peptide
Volume 105, Issue 9, Pages (November 2013)
Jonathan P. Litz, Niket Thakkar, Thomas Portet, Sarah L. Keller 
Volume 96, Issue 8, Pages (April 2009)
Volume 99, Issue 2, Pages (July 2010)
Volume 108, Issue 9, Pages (May 2015)
Erik Hellstrand, Emma Sparr, Sara Linse  Biophysical Journal 
Volume 88, Issue 2, Pages (February 2005)
Desmosterol May Replace Cholesterol in Lipid Membranes
Real-Time Nanoscopy by Using Blinking Enhanced Quantum Dots
Volume 94, Issue 11, Pages (June 2008)
The Role of Cholesterol in Driving IAPP-Membrane Interactions
Jesús Sot, Luis A. Bagatolli, Félix M. Goñi, Alicia Alonso 
Multi-Image Colocalization and Its Statistical Significance
K.A. Riske, L.Q. Amaral, H.-G. Döbereiner, M.T. Lamy 
Sergi Garcia-Manyes, Gerard Oncins, Fausto Sanz  Biophysical Journal 
J.P. Junker, K. Hell, M. Schlierf, W. Neupert, M. Rief 
Volume 114, Issue 1, Pages (January 2018)
Volume 103, Issue 11, Pages (December 2012)
Volume 88, Issue 6, Pages (June 2005)
Main Phase Transitions in Supported Lipid Single-Bilayer
Volume 95, Issue 10, Pages (November 2008)
Effects of Dextran Molecular Weight on Red Blood Cell Aggregation
Volume 108, Issue 4, Pages (February 2015)
Ana Coutinho, Liana Silva, Alexander Fedorov, Manuel Prieto 
Geert van den Bogaart, Jacek T. Mika, Victor Krasnikov, Bert Poolman 
Laurdan Fluorescence Lifetime Discriminates Cholesterol Content from Changes in Fluidity in Living Cell Membranes  Ottavia Golfetto, Elizabeth Hinde,
Presentation transcript:

Giant Unilamellar Vesicles Electroformed from Native Membranes and Organic Lipid Mixtures under Physiological Conditions  L.-Ruth Montes, Alicia Alonso, Felix M. Goñi, Luis A. Bagatolli  Biophysical Journal  Volume 93, Issue 10, Pages 3548-3554 (November 2007) DOI: 10.1529/biophysj.107.116228 Copyright © 2007 The Biophysical Society Terms and Conditions

Figure 1 Fluorescent images (false color representation) of DiIC18-labeled red blood cell (A), RSO ghost (B), and RSO G-ghosts (C and D). All the images were obtained at 20°C in 25mM HEPES, 150mM NaCl, pH 7.2. The white bars correspond to 5μm. Biophysical Journal 2007 93, 3548-3554DOI: (10.1529/biophysj.107.116228) Copyright © 2007 The Biophysical Society Terms and Conditions

Figure 2 (A) Multicolor fluorescence image of RSO G-ghosts in the presence of band III (red, A2) and glycophorin A (magenta, A3) specific immunofluorescence markers (false color representation); the G-ghosts are labeled with DiIC18 lipophilic fluorescent probe (yellow, A1). (B) Multicolor fluorescence image of IO G-ghosts in the presence of band III (red, B2) and glycophorin A (magenta, B3) specific markers. As showed in A, the G-ghosts are labeled with DiIC18 lipophilic fluorescent probe (yellow, B1). The white bars correspond to 30μm. Biophysical Journal 2007 93, 3548-3554DOI: (10.1529/biophysj.107.116228) Copyright © 2007 The Biophysical Society Terms and Conditions

Figure 3 Fluorescence intensity representative images of RSO (A) and IO (B) G-ghosts in the presence of blood group A specific marker (blue); the G-ghosts are labeled with DiIC18 lipophilic fluorescent probe (green). (C) Normalized average fluorescence intensity observed in RSO and IO G-ghost preparations (obtained over 30 individual vesicles) on addition of the immunofluorescence marker against blood group A (right panel). All the images were obtained at 20°C in 25mM HEPES, 150mM NaCl, pH 7.2. The white bar corresponds to 20μm. Biophysical Journal 2007 93, 3548-3554DOI: (10.1529/biophysj.107.116228) Copyright © 2007 The Biophysical Society Terms and Conditions

Figure 4 Laurdan GP images and the corresponding GP histograms obtained for red blood cells (A) and RSO G-ghosts (B). The white bars correspond to 10μm. All the images were obtained at 20°C in 25mM HEPES, 150mM NaCl, pH 7.2. Biophysical Journal 2007 93, 3548-3554DOI: (10.1529/biophysj.107.116228) Copyright © 2007 The Biophysical Society Terms and Conditions

Figure 5 (A) Fluorescence intensity image (false color representation) of DiIC18-labeled RSO G-ghosts (yellow) electroformed from erythrocyte ghosts loaded with Alexa 488 dextran (3000mol wt, green). Notice that the fluorescent dextran remains entrapped in the G-ghosts after electroformation. (B and C) Sketches of the possible mechanisms proposed for G-ghost electroformation. Based on the results reported in Figs. 2, 3, and 5 A, the mechanism described in panel C is excluded (see text). The white bar corresponds to 20μm. Biophysical Journal 2007 93, 3548-3554DOI: (10.1529/biophysj.107.116228) Copyright © 2007 The Biophysical Society Terms and Conditions

Figure 6 Fluorescence images (false color representation) of DiIC18-labeled GUVs composed of red blood cell membrane lipid extracts (A). Laurdan-labeled GUVs composed of (DOPC:DPPC)/cholesterol ((1:1)/20mol %); red and green areas correspond to liquid-ordered and liquid-disordered phases, respectively (B). DiIC18-labeled GUVs composed of POPC/DPPC 3:2mol (C); the high-fluorescence-intensity areas correspond to DPPC-rich gel phase. All the images were obtained at 20°C in 25mM HEPES, 150mM NaCl, pH 7.2. The white bar corresponds to 10μm. Biophysical Journal 2007 93, 3548-3554DOI: (10.1529/biophysj.107.116228) Copyright © 2007 The Biophysical Society Terms and Conditions