Staphylococcus aureus and Bacillus subtilis W23 Make Polyribitol Wall Teichoic Acids Using Different Enzymatic Pathways  Stephanie Brown, Timothy Meredith,

Slides:



Advertisements
Similar presentations
Staphylococcus aureus and Bacillus subtilis W23 Make Polyribitol Wall Teichoic Acids Using Different Enzymatic Pathways Stephanie Brown, Timothy Meredith,
Advertisements

Debosmita Sardar, Zhenjian Lin, Eric W. Schmidt  Chemistry & Biology 
Now Playing: Farnesol in the Biofilm
Nonsense Mutations Inhibit RNA Splicing in a Cell-Free System: Recognition of Mutant Codon Is Independent of Protein Synthesis  Said Aoufouchi, José Yélamos,
Volume 23, Issue 8, Pages (August 2016)
Mycolic Acids: Structures, Biosynthesis, and Beyond
Travis S. Young, Pieter C. Dorrestein, Christopher T. Walsh 
Merlind Muecke, Martin Samuels, Megan Davey, David Jeruzalmi  Structure 
Daniel Chi-Hong Lin, Alan D Grossman  Cell 
Miglena Manandhar, John E. Cronan  Chemistry & Biology 
Volume 24, Issue 8, Pages e3 (August 2017)
Biologically Inspired Synthetic Enzymes Made from DNA
Biosynthesis of Actinorhodin and Related Antibiotics: Discovery of Alternative Routes for Quinone Formation Encoded in the act Gene Cluster  Susumu Okamoto,
Volume 19, Issue 2, Pages (February 2012)
Highly Efficient Self-Replicating RNA Enzymes
Volume 24, Issue 10, Pages e7 (October 2017)
Volume 19, Issue 2, Pages (February 2012)
Volume 21, Issue 10, Pages (October 2014)
A Revised Pathway Proposed for Staphylococcus aureus Wall Teichoic Acid Biosynthesis Based on In Vitro Reconstitution of the Intracellular Steps  Stephanie.
Volume 17, Issue 9, Pages (September 2010)
Volume 15, Issue 8, Pages (August 2008)
Matthew W.L. Lau, Peter J. Unrau  Chemistry & Biology 
Redesign of a Dioxygenase in Morphine Biosynthesis
Volume 23, Issue 3, Pages (March 2016)
Volume 20, Issue 12, Pages (December 2013)
Merlind Muecke, Martin Samuels, Megan Davey, David Jeruzalmi  Structure 
Kento Koketsu, Hiroki Oguri, Kenji Watanabe, Hideaki Oikawa 
Elucidation of the Biosynthetic Gene Cluster and the Post-PKS Modification Mechanism for Fostriecin in Streptomyces pulveraceus  Rixiang Kong, Xuejiao.
RRNA Modifications in an Intersubunit Bridge of the Ribosome Strongly Affect Both Ribosome Biogenesis and Activity  Xue-hai Liang, Qing Liu, Maurille.
A Metabolomic View of Staphylococcus aureus and Its Ser/Thr Kinase and Phosphatase Deletion Mutants: Involvement in Cell Wall Biosynthesis  Manuel Liebeke,
Volume 91, Issue 4, Pages (November 1997)
Volume 20, Issue 12, Pages (December 2013)
Volume 25, Issue 3, Pages (February 2007)
Volume 21, Issue 10, Pages (October 2014)
Yoshikazu Kawai, Romain Mercier, Jeff Errington  Current Biology 
Sherry S. Lamb, Tejal Patel, Kalinka P. Koteva, Gerard D. Wright 
Johnson Cheung, Michael E.P. Murphy, David E. Heinrichs 
PqsE of Pseudomonas aeruginosa Acts as Pathway-Specific Thioesterase in the Biosynthesis of Alkylquinolone Signaling Molecules  Steffen Lorenz Drees,
Now Playing: Farnesol in the Biofilm
Broad-Spectrum Antibiotic Activity of the Arylomycin Natural Products Is Masked by Natural Target Mutations  Peter A. Smith, Tucker C. Roberts, Floyd.
Terence S. Crofts, Erica C. Seth, Amrita B. Hazra, Michiko E. Taga 
Volume 22, Issue 10, Pages (October 2015)
Volume 15, Issue 1, Pages 5-11 (January 2008)
Volume 16, Issue 5, Pages (May 2009)
An Artificial Pathway to 3,4-Dihydroxybenzoic Acid Allows Generation of New Aminocoumarin Antibiotic Recognized by Catechol Transporters of E. coli  Silke.
Volume 20, Issue 4, Pages (April 2013)
Volume 21, Issue 8, Pages (August 2014)
One Enzyme, Three Metabolites: Shewanella algae Controls Siderophore Production via the Cellular Substrate Pool  Sina Rütschlin, Sandra Gunesch, Thomas.
Toward the Pathway of S. aureus WTA Biosynthesis
Volume 18, Issue 4, Pages (April 2011)
Volume 17, Issue 4, Pages (April 2010)
Volume 15, Issue 11, Pages (November 2008)
Volume 10, Issue 12, Pages (December 2003)
Volume 18, Issue 4, Pages (April 2011)
Gerald Lackner, Markus Bohnert, Jonas Wick, Dirk Hoffmeister 
L-DOPA Ropes in tRNAPhe
A Family of Pyrazinone Natural Products from a Conserved Nonribosomal Peptide Synthetase in Staphylococcus aureus  Michael Zimmermann, Michael A. Fischbach 
Jodi L. Vogel, Dawn A. Parsell, Susan Lindquist  Current Biology 
Functional Recognition of the 5′ Splice Site by U4/U6
Volume 13, Issue 4, Pages (April 2006)
Dual Carbamoylations on the Polyketide and Glycosyl Moiety by Asm21 Result in Extended Ansamitocin Biosynthesis  Yan Li, Peiji Zhao, Qianjin Kang, Juan.
Volume 21, Issue 9, Pages (September 2014)
Tools to Tackle Protein Acetylation
Giorgio Sirugo, Kenneth K. Kidd  The American Journal of Human Genetics 
Volume 17, Issue 9, Pages (September 2010)
The V(D)J Recombinase Efficiently Cleaves and Transposes Signal Joints
Debosmita Sardar, Zhenjian Lin, Eric W. Schmidt  Chemistry & Biology 
Exon Skipping in IVD RNA Processing in Isovaleric Acidemia Caused by Point Mutations in the Coding Region of the IVD Gene  Jerry Vockley, Peter K. Rogan,
Volume 21, Issue 9, Pages (September 2014)
Volume 18, Issue 3, Pages (March 2011)
Presentation transcript:

Staphylococcus aureus and Bacillus subtilis W23 Make Polyribitol Wall Teichoic Acids Using Different Enzymatic Pathways  Stephanie Brown, Timothy Meredith, Jonathan Swoboda, Suzanne Walker  Chemistry & Biology  Volume 17, Issue 10, Pages 1101-1110 (October 2010) DOI: 10.1016/j.chembiol.2010.07.017 Copyright © 2010 Elsevier Ltd Terms and Conditions

Chemistry & Biology 2010 17, 1101-1110DOI: (10. 1016/j. chembiol. 2010 Copyright © 2010 Elsevier Ltd Terms and Conditions

Figure 1 Teichoic Acids Are a Major Component of the Gram-Positive Cell Wall, and the Pathway for Ribitol-Phosphate WTAs Has Been Proposed (A) A schematic of the Gram-positive cell wall depicting membrane-anchored LTA and peptidoglycan-anchored WTA polymers. (B) The chemical structure of ribitol-phosphate WTA as found in S. aureus and B. subtilis W23 (y = 1–2, z = 20–40). The tailoring modifications on the main chain hydroxyls are omitted for clarity. (C) Lazarevic et al. (2002) proposed the biosynthetic pathway depicted above for polyribitol-phosphate WTAs. The numbers in parentheses correspond to the substrates utilized in our in vitro experiments (see Figure 2 for chemical structures). Chemistry & Biology 2010 17, 1101-1110DOI: (10.1016/j.chembiol.2010.07.017) Copyright © 2010 Elsevier Ltd Terms and Conditions

Figure 2 Structures of WTA Substrates and Intermediates The structures of the CDP-glycerol (1) and CDP-ribitol (2) donor and lipid acceptor substrates 3, 4, 5, 6, and 7 are shown. The natural acceptor substrates contain an undecaprenyl chain. Substrates having the “a” suffix contain a neryl chain and were used for LC/MS analysis; substrates having the “b” suffix contain a farnesyl chain and were used for PAGE analysis. Synthesis of substrates and incorporation of [14C] radiolabels for PAGE analysis were carried out as described previously (Brown et al., 2008). Chemistry & Biology 2010 17, 1101-1110DOI: (10.1016/j.chembiol.2010.07.017) Copyright © 2010 Elsevier Ltd Terms and Conditions

Figure 3 TarF Is a Polymerase in B. subtilis W23 and a Primase in S. aureus (A) Reaction carried out by TarF (n = 3–9 for TarFBs; n = 2 for TarFSa). (B and C) PAGE analysis of TarFBs (B) and TarFSa (C) reactions using 1 and substrate 4b in the presence of heat-treated (−) or active enzyme (+). Tabulated masses of purified TarF reaction products using substrate 4a are shown. Chemistry & Biology 2010 17, 1101-1110DOI: (10.1016/j.chembiol.2010.07.017) Copyright © 2010 Elsevier Ltd Terms and Conditions

Figure 4 TarK and TarL React Sequentially on the TarB Product (4) (A) PAGE analysis of a tandem TarKBs/TarLBs reaction using either heat-treated (−) or active (+) enzymes incubated with CDP-ribitol and 4b, 5b, or 6b. The polymeric material in the middle panel is due to reaction with contaminating 4b. Polymer product only forms when 4b is used as the starting material (see text). (B) PAGE analysis of TarLBs heat-treated (−) or active (+) enzyme incubated with 4b or 7b and CDP-ribitol (2). TarLBs reacts only with 7b. See also Figure S4. (C) Reactions carried out by TarKBs and TarLBs with CDP-ribitol (2) and substrates 4 and 7, respectively. Chemistry & Biology 2010 17, 1101-1110DOI: (10.1016/j.chembiol.2010.07.017) Copyright © 2010 Elsevier Ltd Terms and Conditions

Figure 5 TarKBs and TarLBs Make polyRboP-WTAs In Vivo in the Absence of TarFBs (A) Growth curves of B. subtilis W23 wild-type (WT) or ΔtarF strains. (B) Photograph of bacterial colonies of B. subtilis W23 wild-type (WT) or ΔtarF strains. (C and D) WTAs of the parent wild-type strain or the ΔtarF strain extracted from the B. subtilis/S. aureus hybrid strain JT215 (C) or B. subtilis W23 (D) analyzed by PAGE analysis and Alcian blue/silver staining. (E) Agarose gel analysis of PCR-amplified fragments from B. subtilis W23 cDNA or genomic DNA (positive control). (+) and (−) indicate the presence or absence of reverse transcriptase during cDNA synthesis. The sizes of the amplified fragments are 170 bp (tarK), 159 bp (tarF), and 68 bp (16S rRNA) (internal control). Chemistry & Biology 2010 17, 1101-1110DOI: (10.1016/j.chembiol.2010.07.017) Copyright © 2010 Elsevier Ltd Terms and Conditions

Figure 6 Two Pathways for Polyribitol-Phosphate WTA Formation in Bacteria A schematic of the verified late-stage intracellular steps in WTA biosynthesis in S. aureus and B. subtilis W23. Chemistry & Biology 2010 17, 1101-1110DOI: (10.1016/j.chembiol.2010.07.017) Copyright © 2010 Elsevier Ltd Terms and Conditions