Pavanjeet Kaur, Yaqiong Li, Jianfeng Cai, Likai Song 

Slides:



Advertisements
Similar presentations
How Do Thermophilic Proteins and Proteomes Withstand High Temperature? Lucas Sawle, Kingshuk Ghosh Biophysical Journal Volume 101, Issue 1, Pages
Advertisements

Inhibitor Binding Increases the Mechanical Stability of Staphylococcal Nuclease Chien-Chung Wang, Tian-Yow Tsong, Yau-Heiu Hsu, Piotr E. Marszalek Biophysical.
Tryptophan-Lipid Interactions in Membrane Protein Folding Probed by Ultraviolet Resonance Raman and Fluorescence Spectroscopy Katheryn M. Sanchez, Guipeun.
Yield Strength of Human Erythrocyte Membranes to Impulsive Stretching Fenfang Li, Chon U Chan, Claus Dieter Ohl Biophysical Journal Volume 105, Issue 4,
X-Ray Absorption Spectroscopy of Dinuclear Metallohydrolases David L. Tierney, Gerhard Schenk Biophysical Journal Volume 107, Issue 6, Pages
Lever-Arm Mechanics of Processive Myosins Yujie Sun, Yale E. Goldman Biophysical Journal Volume 101, Issue 1, Pages 1-11 (July 2011) DOI: /j.bpj
Agarose-Dextran Gels as Synthetic Analogs of Glomerular Basement Membrane: Water Permeability Jeffrey A. White, William M. Deen Biophysical Journal Volume.
Direct Measurements of the Mechanical Stability of Zinc-Thiolate Bonds in Rubredoxin by Single-Molecule Atomic Force Microscopy Peng Zheng, Hongbin Li.
Volume 112, Issue 10, Pages (May 2017)
Intramembrane Water Associated with TOAC Spin-Labeled Alamethicin: Electron Spin- Echo Envelope Modulation by D2O  R. Bartucci, R. Guzzi, L. Sportelli,
Volume 112, Issue 11, Pages (June 2017)
Dejun Lin, Alan Grossfield  Biophysical Journal 
Volume 96, Issue 10, Pages (May 2009)
Volume 100, Issue 10, Pages (May 2011)
Volume 107, Issue 10, Pages (November 2014)
Sheila G. Couto, M. Cristina Nonato, Antonio J. Costa-Filho 
Christina E.B. Caesar, Elin K. Esbjörner, Per Lincoln, Bengt Nordén 
Daniel M. Freed, Peter S. Horanyi, Michael C. Wiener, David S. Cafiso 
Volume 106, Issue 12, Pages (June 2014)
Composition Fluctuations in Lipid Bilayers
Volume 95, Issue 12, Pages (December 2008)
Armando J. de Jesus, Ormacinda R. White, Aaron D. Flynn, Hang Yin 
Volume 113, Issue 6, Pages (September 2017)
Reversible Liposome Association Induced by LAH4: A Peptide with Potent Antimicrobial and Nucleic Acid Transfection Activities  Arnaud Marquette, Bernard.
Hai Li, Oleg A. Sineshchekov, Giordano F.Z. da Silva, John L. Spudich 
Membrane Insertion and Lipid-Protein Interactions of Bovine Seminal Plasma Protein PDC-109 Investigated by Spin-Label Electron Spin Resonance Spectroscopy 
Felix Campelo, Harvey T. McMahon, Michael M. Kozlov 
Volume 102, Issue 3, Pages (February 2012)
Volume 107, Issue 6, Pages (September 2014)
EPR Spectroscopy Targets Structural Changes in the E
Experimental and Computational Studies Investigating Trehalose Protection of HepG2 Cells from Palmitate-Induced Toxicity  Sukit Leekumjorn, Yifei Wu,
Lipid Interactions and Organization in Complex Bilayer Membranes
H.M. Seeger, G. Marino, A. Alessandrini, P. Facci  Biophysical Journal 
Giant Unilamellar Vesicles Formed by Hybrid Films of Agarose and Lipids Display Altered Mechanical Properties  Rafael B. Lira, Rumiana Dimova, Karin A.
Andrew E. Blanchard, Mark J. Arcario, Klaus Schulten, Emad Tajkhorshid 
Volume 107, Issue 10, Pages (November 2014)
Thermodynamic Profiling of Peptide Membrane Interactions by Isothermal Titration Calorimetry: A Search for Pores and Micelles  J.R. Henriksen, T.L. Andresen 
Holly C. Gaede, Klaus Gawrisch  Biophysical Journal 
Volume 113, Issue 6, Pages (September 2017)
Hyunbum Jang, Buyong Ma, Thomas B. Woolf, Ruth Nussinov 
Calcium Enhances Binding of Aβ Monomer to DMPC Lipid Bilayer
Lipid Headgroups Modulate Membrane Insertion of pHLIP Peptide
Molecular Model of a Cell Plasma Membrane With an Asymmetric Multicomponent Composition: Water Permeation and Ion Effects  Robert Vácha, Max L. Berkowitz,
Volume 95, Issue 9, Pages (November 2008)
Volume 96, Issue 2, Pages (January 2009)
Lipid Raft Composition Modulates Sphingomyelinase Activity and Ceramide-Induced Membrane Physical Alterations  Liana C. Silva, Anthony H. Futerman, Manuel.
Chang-Chun Lee, Yen Sun, Huey W. Huang  Biophysical Journal 
Volume 94, Issue 2, Pages (January 2008)
Desmosterol May Replace Cholesterol in Lipid Membranes
Cholesterol Modulates the Dimer Interface of the β2-Adrenergic Receptor via Cholesterol Occupancy Sites  Xavier Prasanna, Amitabha Chattopadhyay, Durba.
Volume 112, Issue 2, Pages (January 2017)
Volume 111, Issue 1, Pages (July 2016)
Volume 96, Issue 11, Pages (June 2009)
The Structural Basis of Cholesterol Accessibility in Membranes
Volume 110, Issue 7, Pages (April 2016)
Allosteric Control of Syntaxin 1a by Munc18-1: Characterization of the Open and Closed Conformations of Syntaxin  Damian Dawidowski, David S. Cafiso 
Philip J. Robinson, Teresa J.T. Pinheiro  Biophysical Journal 
Volume 95, Issue 7, Pages (October 2008)
Miyeon Kim, Qi Xu, Gail E. Fanucci, David S. Cafiso 
Detailed Comparison of Deuterium Quadrupole Profiles between Sphingomyelin and Phosphatidylcholine Bilayers  Tomokazu Yasuda, Masanao Kinoshita, Michio.
Huan-Xiang Zhou, Osman Bilsel  Biophysical Journal 
Alternative Mechanisms for the Interaction of the Cell-Penetrating Peptides Penetratin and the TAT Peptide with Lipid Bilayers  Semen Yesylevskyy, Siewert-Jan.
Volume 88, Issue 6, Pages (June 2005)
The Functional Activity of the Human Serotonin 5-HT1A Receptor Is Controlled by Lipid Bilayer Composition  M. Gertrude Gutierrez, Kylee S. Mansfield,
Systems Biophysics: Multiscale Biophysical Modeling of Organ Systems
Phase-Separation and Domain-Formation in Cholesterol-Sphingomyelin Mixture: Pulse- EPR Oxygen Probing  Laxman Mainali, Marija Raguz, Witold K. Subczynski 
Interactions of the Auxilin-1 PTEN-like Domain with Model Membranes Result in Nanoclustering of Phosphatidyl Inositol Phosphates  Antreas C. Kalli, Gareth.
Lipid Librations at the Interface with the Na,K-ATPase
Saroj Kumar, Andreas Barth  Biophysical Journal 
The NorM MATE Transporter from N
Presentation transcript:

Selective Membrane Disruption Mechanism of an Antibacterial γ-AApeptide Defined by EPR Spectroscopy  Pavanjeet Kaur, Yaqiong Li, Jianfeng Cai, Likai Song  Biophysical Journal  Volume 110, Issue 8, Pages 1789-1799 (April 2016) DOI: 10.1016/j.bpj.2016.02.038 Copyright © 2016 Biophysical Society Terms and Conditions

Figure 1 Structure of lipo-cyclic-γ-AApeptide 1 (A) and comparison of an α-peptide (B) and a γ-AApeptide (C). A γ-AApeptide is comparable to an α-peptide in unit length and half of the side chains of a γ-AApeptide are linked to the amide groups. The lipo-cyclic-γ-AApeptide 1 contains a cyclic γ-AApeptide and a lipid tail. Biophysical Journal 2016 110, 1789-1799DOI: (10.1016/j.bpj.2016.02.038) Copyright © 2016 Biophysical Society Terms and Conditions

Figure 2 Membrane permeability changes induced by AA1 binding. (A) Comparison of the permeability changes of liposomes with different lipid compositions at an L/P of 10. The following lipids were compared: POPC/POPG, POPC, and POPC with 10, 30, and 50% CHOL. (B) Permeability changes of POPC/POPG liposomes with L/Ps ranging from 10 to 80. Note: A 100% permeability change indicates complete 4-PT and VC mixing and 4-PT signal reduction due to membrane penetration. Biophysical Journal 2016 110, 1789-1799DOI: (10.1016/j.bpj.2016.02.038) Copyright © 2016 Biophysical Society Terms and Conditions

Figure 3 Membrane fluidity changes in the presence of AA1. Room temperature EPR spectra and mobility changes upon AA1 binding of liposomes labeled with 5-SASL for (A) POPC/POPG, (B) POPC, and (C) POPC/30% CHOL liposomes at an L/P of 10. EPR spectra of bare liposomes are overlaid with the spectra in the presence of AA1. The 2T|| changes (Δ2T||) on AA1 binding are shown on the upper-right side of the spectra. To see this figure in color, go online. Biophysical Journal 2016 110, 1789-1799DOI: (10.1016/j.bpj.2016.02.038) Copyright © 2016 Biophysical Society Terms and Conditions

Figure 4 Lipid lateral ordering. 94 GHz EPR spectra of POPC/POPG (A) and POPC (B) liposomes with 5-SASL in the absence and presence of AA1. Lateral ordering was detected for (A) with arrows showing the 〈gxx〉, 〈gyy〉, and 〈gzz〉 components. The L/P is 10. No sign of lateral ordering was observed for (B). (C) Membrane structure showing transverse and lateral order and the corresponding g-factor anisotropy, indicated by gxx, gyy, and gzz. The averaged principle axes of a nitroxide spin label (5-SASL) aligned with regard to a bilayer are shown. Changes in lipid lateral order are reflected in the x and y components of the g tensors of the spin label. To see this figure in color, go online. Biophysical Journal 2016 110, 1789-1799DOI: (10.1016/j.bpj.2016.02.038) Copyright © 2016 Biophysical Society Terms and Conditions

Figure 5 Accessibility changes upon the binding of AA1. Changes in O2 (A) and NiEDDA (B) accessibility of POPC/POPG liposomes with 5-SASL on the addition of AA1 are shown. (C) Comparison of the percentage of the O2 accessibility changes of POPC/POPG, POPC, and POPC/30% CHOL liposomes upon AA1 binding. Biophysical Journal 2016 110, 1789-1799DOI: (10.1016/j.bpj.2016.02.038) Copyright © 2016 Biophysical Society Terms and Conditions

Figure 6 Depth parameter changes of 7-PC, 10-PC, and 12-PC upon AA1 binding to POPC/POPG liposomes when compared to bare liposomes. Biophysical Journal 2016 110, 1789-1799DOI: (10.1016/j.bpj.2016.02.038) Copyright © 2016 Biophysical Society Terms and Conditions

Figure 7 Membrane interaction and disruption mechanism of AA1. (A) AA1 binds to the membrane through electrostatic and hydrophobic interactions. (B) Insertion of the bulky hydrophobic groups of AA1 into the membrane results in lateral expansion of the upper leaflet of a lipid bilayer. (C) Lipid lateral expansion leads to membrane thinning. Moreover, peptide insertion causes transient membrane disruption or local bilayer disorder, subsequently leading to permeability changes. To see this figure in color, go online. Biophysical Journal 2016 110, 1789-1799DOI: (10.1016/j.bpj.2016.02.038) Copyright © 2016 Biophysical Society Terms and Conditions