Professor Ronald L. Carter

Slides:



Advertisements
Similar presentations
Semiconductor Device Modeling and Characterization – EE5342 Lecture 35 – Spring 2011 Professor Ronald L. Carter
Advertisements

EE 5340 Semiconductor Device Theory Lecture 18 – Spring 2011 Professor Ronald L. Carter
Current Components inside Bipolar Junction Transistor (BJT) NPN BJT.
L14 March 31 EE5342 – Semiconductor Device Modeling and Characterization Lecture 14 - Spring 2005 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 21 – Spring 2011
L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring 2004 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 17 – Spring 2011 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 22 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 15 – Spring 2011 Professor Ronald L. Carter
L27 23Apr021 Semiconductor Device Modeling and Characterization EE5342, Lecture 27 -Sp 2002 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 19 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 - Fall 2010
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011 Professor Ronald L. Carter
L17 March 221 EE5342 – Semiconductor Device Modeling and Characterization Lecture 17 - Spring 2005 Professor Ronald L. Carter
Professor Ronald L. Carter
L26 April 261 EE5342 – Semiconductor Device Modeling and Characterization Lecture 26 - Spring 2005 Professor Ronald L. Carter
BJT Static Characteristics
Professor Ronald L. Carter
Lecture 27 OUTLINE The BJT (cont’d) Breakdown mechanisms
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 16 – Spring 2011
Introduction to BJT Amplifier
Bipolar Junction Transistor (BJT) Chapter and 25 March 2016
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture #25 OUTLINE BJT: Deviations from the Ideal
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 19 – Spring 2011
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 18 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011
Professor Ronald L. Carter
Lecture 26 OUTLINE The BJT (cont’d) Ideal transistor analysis
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture 25 OUTLINE The BJT (cont’d) Ideal transistor analysis
Professor Ronald L. Carter
Lecture 25 OUTLINE The BJT (cont’d) Ideal transistor analysis
Lecture 26 OUTLINE The BJT (cont’d) Ideal transistor analysis
Professor Ronald L. Carter
Professor Ronald L. Carter
Bipolar Junction Transistor (BJT) Chapter and 17 March 2017
Semiconductor Device Modeling & Characterization Lecture 15
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 15 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 17 - Fall 2003
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Bipolar Junction Transistor (BJT) Chapter and 27 March 2019
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 17 – Spring 2011
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 20 - Fall 2010
Semiconductor Device Modeling & Characterization Lecture 23
Chapter 5 Bipolar Junction Transistors
Presentation transcript:

Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/ Semiconductor Device Modeling and Characterization – EE5342 Lecture 20 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/

IC npn BJT (*Fig 9.2a) ©rlc L20-25Mar2011

npn BJT currents (F A region, ©RLC) IC = JCAC IB=-(IE+IC ) JnE JnC IE = -JEAE JRB=JnE-JnC JpE JGC JRE JpC ©rlc L20-25Mar2011

Defining currents in FA mode npn BJT (Fig 9.13*) ©rlc L20-25Mar2011

Common base current gain, aF (cont.) ©rlc L20-25Mar2011

Common emitter current gain, bF ©rlc L20-25Mar2011

Ebers-Moll Model (Neglecting G-R curr) (Fig. 9.30*) -JEAE=IE JCAC=IC ©rlc L20-25Mar2011

Source of Ebers-Moll Equations (E) ©rlc L20-25Mar2011

Source of Ebers-Moll Equations (C) ©rlc L20-25Mar2011

E-M model equations ©rlc L20-25Mar2011

Ebers-Moll Model (Neglecting G-R curr) (Fig. 9.30*) -JEAE=IE JCAC=IC ©rlc L20-25Mar2011

Linking current E-M circuit model ©rlc L20-25Mar2011

Linking current version of E-M model ©rlc L20-25Mar2011

Linking current E-M model (cont) ©rlc L20-25Mar2011

Non-ideal effects in BJTs Recombination/Generation effects Base-width modulation (FA: xB changes with changes in VBC) Current crowding in 2-dim base High-level injection (minority carriers g.t. dopant - especially in the base). Emitter Bandgap narrowing (NE ~ density of states at cond. band. edge) Junction breakdown at BC junction ©rlc L20-25Mar2011

Recombination/Gen Currents (FA) ©rlc L20-25Mar2011

npn Base-width mod. (Early Effect) Fig 9.15* ©rlc L20-25Mar2011

References 1 OrCAD PSpice A/D Manual, Version 9.1, November, 1999, OrCAD, Inc. 2 Semiconductor Device Modeling with SPICE, 2nd ed., by Massobrio and Antognetti, McGraw Hill, NY, 1993. * Semiconductor Physics & Devices, by Donald A. Neamen, Irwin, Chicago, 1997. ** Modeling the Bipolar Transistor, by Ian Getreau, Tektronix, Inc., (out of print). ©rlc L20-25Mar2011