Theory of Triplet Excitation Transfer in the Donor-Oxygen-Acceptor System: Application to Cytochrome b6f  Elmar G. Petrov, Bruno Robert, Sheng Hsien Lin,

Slides:



Advertisements
Similar presentations
How Do Thermophilic Proteins and Proteomes Withstand High Temperature? Lucas Sawle, Kingshuk Ghosh Biophysical Journal Volume 101, Issue 1, Pages
Advertisements

Analysis of Kinetic Intermediates in Single-Particle Dwell-Time Distributions Daniel L. Floyd, Stephen C. Harrison, Antoine M. van Oijen Biophysical Journal.
Counter-Intuitive Stochastic Behavior of Simple Gene Circuits with Negative Feedback Tatiana T. Marquez-Lago, Jörg Stelling Biophysical Journal Volume.
Inhibitor Binding Increases the Mechanical Stability of Staphylococcal Nuclease Chien-Chung Wang, Tian-Yow Tsong, Yau-Heiu Hsu, Piotr E. Marszalek Biophysical.
Structure and Dynamics of ER: Minimal Networks and Biophysical Constraints Congping Lin, Yiwei Zhang, Imogen Sparkes, Peter Ashwin Biophysical Journal.
Elucidating the Locking Mechanism of Peptides onto Growing Amyloid Fibrils through Transition Path Sampling Marieke Schor, Jocelyne Vreede, Peter G. Bolhuis.
Phase Resetting Curves Allow for Simple and Accurate Prediction of Robust N:1 Phase Locking for Strongly Coupled Neural Oscillators Carmen C. Canavier,
Molecular Model of a Cell Plasma Membrane With an Asymmetric Multicomponent Composition: Water Permeation and Ion Effects Robert Vácha, Max L. Berkowitz,
A Multiscale Red Blood Cell Model with Accurate Mechanics, Rheology, and Dynamics Dmitry A. Fedosov, Bruce Caswell, George Em Karniadakis Biophysical Journal.
X-Ray Absorption Spectroscopy of Dinuclear Metallohydrolases David L. Tierney, Gerhard Schenk Biophysical Journal Volume 107, Issue 6, Pages
Cytoskeletal Polymer Networks: Viscoelastic Properties are Determined by the Microscopic Interaction Potential of Cross-links O. Lieleg, K.M. Schmoller,
Lever-Arm Mechanics of Processive Myosins Yujie Sun, Yale E. Goldman Biophysical Journal Volume 101, Issue 1, Pages 1-11 (July 2011) DOI: /j.bpj
The Importance of the Hook Region of the Cochlea for Bone-Conduction Hearing Namkeun Kim, Charles R. Steele, Sunil Puria Biophysical Journal Volume 107,
The Interrelations among Stochastic Pacing, Stability, and Memory in the Heart Hila Dvir, Sharon Zlochiver Biophysical Journal Volume 107, Issue 4, Pages.
Cell Traction Forces Direct Fibronectin Matrix Assembly Christopher A. Lemmon, Christopher S. Chen, Lewis H. Romer Biophysical Journal Volume 96, Issue.
Quantifying the Rheological and Hemodynamic Characteristics of Sickle Cell Anemia Huan Lei, George Em Karniadakis Biophysical Journal Volume 102, Issue.
Increasing Membrane Tension Decreases Miscibility Temperatures; an Experimental Demonstration via Micropipette Aspiration Thomas Portet, Sharona E. Gordon,
Nonlinear Poisson Equation for Heterogeneous Media Langhua Hu, Guo-Wei Wei Biophysical Journal Volume 103, Issue 4, Pages (August 2012) DOI: /j.bpj
Direct Measurements of the Mechanical Stability of Zinc-Thiolate Bonds in Rubredoxin by Single-Molecule Atomic Force Microscopy Peng Zheng, Hongbin Li.
A Protein Dynamics Study of Photosystem II: The Effects of Protein Conformation on Reaction Center Function  Sergej Vasil’ev, Doug Bruce  Biophysical.
Volume 111, Issue 7, Pages (October 2016)
Kinetic Hysteresis in Collagen Folding
Water and Backbone Dynamics in a Hydrated Protein
Volume 85, Issue 1, Pages (July 2003)
Lorenzo Cordone, Michel Ferrand, Eugenio Vitrano, Giuseppe Zaccai 
Volume 95, Issue 2, Pages (July 2008)
Volume 96, Issue 12, Pages (June 2009)
Gil Rahamim, Dan Amir, Elisha Haas  Biophysical Journal 
Volume 98, Issue 7, Pages (April 2010)
Volume 109, Issue 11, Pages (December 2015)
Andrés Jara-Oseguera, León D. Islas  Biophysical Journal 
Volume 84, Issue 2, Pages (February 2003)
Fluorescence Correlation Spectroscopy Close to a Fluctuating Membrane
Phase Transitions in Biological Systems with Many Components
Antarip Halder, Rohit Roy, Dhananjay Bhattacharyya, Abhijit Mitra 
Volume 96, Issue 1, Pages (January 2009)
Mechanisms of Receptor/Coreceptor-Mediated Entry of Enveloped Viruses
Volume 97, Issue 9, Pages (November 2009)
Volume 109, Issue 9, Pages (November 2015)
Role of Intramolecular Vibrations in Long-Range Electron Transfer between Pheophytin and Ubiquinone in Bacterial Photosynthetic Reaction Centers  Raffaele.
Volume 109, Issue 5, Pages (September 2015)
Volume 101, Issue 4, Pages (August 2011)
Volume 107, Issue 3, Pages (August 2014)
Extracting the Excitonic Hamiltonian of the Fenna-Matthews-Olson Complex Using Three-Dimensional Third-Order Electronic Spectroscopy  Dugan Hayes, Gregory S.
Colocalization of Multiple DNA Loci: A Physical Mechanism
Volume 105, Issue 12, Pages (December 2013)
Volume 99, Issue 9, Pages (November 2010)
Volume 99, Issue 2, Pages (July 2010)
Volume 99, Issue 1, Pages (July 2010)
Kinetic Hysteresis in Collagen Folding
Hisashi Ishida, Hidetoshi Kono  Biophysical Journal 
Magnetic Field Effects in Arabidopsis thaliana Cryptochrome-1
Protein Collective Motions Coupled to Ligand Migration in Myoglobin
Probing Red Cell Membrane Cholesterol Movement with Cyclodextrin
Volume 99, Issue 2, Pages (July 2010)
Volume 113, Issue 1, Pages (July 2017)
Dmitrii V. Vavilin, Esa Tyystjärvi, Eva-Mari Aro  Biophysical Journal 
The Effect of Dye-Dye Interactions on the Spatial Resolution of Single-Molecule FRET Measurements in Nucleic Acids  Nicolas Di Fiori, Amit Meller  Biophysical.
Richa Dave, Daniel S. Terry, James B. Munro, Scott C. Blanchard 
An Effective Solvent Theory Connecting the Underlying Mechanisms of Osmolytes and Denaturants for Protein Stability  Apichart Linhananta, Shirin Hadizadeh,
Saswata Sankar Sarkar, Jayant B. Udgaonkar, Guruswamy Krishnamoorthy 
Satomi Matsuoka, Tatsuo Shibata, Masahiro Ueda  Biophysical Journal 
Volume 98, Issue 10, Pages (May 2010)
Félix Proulx-Giraldeau, Thomas J. Rademaker, Paul François 
Volume 88, Issue 6, Pages (June 2005)
Enrique M. De La Cruz, Jean-Louis Martiel, Laurent Blanchoin 
Kinetic Folding Mechanism of Erythropoietin
Volume 99, Issue 1, Pages (July 2010)
Volume 97, Issue 7, Pages (October 2009)
Barrier Compression and Its Contribution to Both Classical and Quantum Mechanical Aspects of Enzyme Catalysis  Sam Hay, Linus O. Johannissen, Michael.
Presentation transcript:

Theory of Triplet Excitation Transfer in the Donor-Oxygen-Acceptor System: Application to Cytochrome b6f  Elmar G. Petrov, Bruno Robert, Sheng Hsien Lin, Leonas Valkunas  Biophysical Journal  Volume 109, Issue 8, Pages 1735-1745 (October 2015) DOI: 10.1016/j.bpj.2015.08.026 Copyright © 2015 Biophysical Society Terms and Conditions

Figure 1 Oxygen-mediated sequential (hopping) I⇄B⇄F and direct (coherent) I⇄F routes for triplet excitation transfer between D and A molecules (thin and thick arrows, respectively). (Wave lines) Decay of excitation within each separate molecule. ΔεBI(F) = εB − εI(F) is the energy gap among the bridging (B), initial (I), and final (F) states of the DO2A system. Biophysical Journal 2015 109, 1735-1745DOI: (10.1016/j.bpj.2015.08.026) Copyright © 2015 Biophysical Society Terms and Conditions

Figure 2 Kinetics of the D-A triplet excitation transfer on a timescale Δt ∼ τtr(≪τdec) at ΔεD ≃ εIB > 0. The major contribution to the transfer process arises from the sequential route. If r−i ≫ rf, then probability of the formation of intermediate state I (with the 1O∗2) can be rather large (a), whereas at r−i ≪ rf the noted probability is small (b). The calculations are based on Eqs. 6–9, and Eqs. A2, B5, and A17 (see the Supporting Material) (at G0FI = ΔεIF ≃ −Δε) with T = 0.025 eV(≈290 K), ΔεD = −0.05 eV, ΔεA = −0.15 eV, Δε = 0.2 eV, λD ≃ λBI = 0.05 eV, λA ≃ λBF = 0.05 eV, λDA ≃ λFI = 0.06 eV, VO2,D ≃ VB,I = 5 × 10−4 eV, and VA,O2 ≃ VF,B = 2 × 10−4 eV (a); and VO2,D ≃ VB,I = 1.5 × 10−4 eV and VA,O2 ≃ VF,B = 5 × 10−3 eV (b). Biophysical Journal 2015 109, 1735-1745DOI: (10.1016/j.bpj.2015.08.026) Copyright © 2015 Biophysical Society Terms and Conditions

Figure 3 Kinetics of the D-A triplet excitation transfer on the timescale Δt ∼ τtr (≪τdec) for ΔεD < 0. The major contribution to the transfer process is associated with the coherent route. Population of intermediate state I (and, thus, the 1O∗2 state) is negligible. The calculations are the same as in Fig. 2 except ΔεD = 0.12 eV, ΔεA = 0.24 eV, Δε = 0.12 eV, VO2,D = 1.5 × 10−4 eV, and VA,O2 = 5 × 10−2 eV. Biophysical Journal 2015 109, 1735-1745DOI: (10.1016/j.bpj.2015.08.026) Copyright © 2015 Biophysical Society Terms and Conditions

Figure 4 Relative contributions of sequential and coherent routes in the D-A triplet transfer as the function of reorganization energy λ ≡ λD = λA = λDA. At the fixed VO2,D, even small alteration in the coupling VA,O2 or temperature leads to noticeable change in the contributions associated with sequential and coherent routes. Calculations with Eq. 28 are at the same parameters as in Fig. 3 except VA,O2 = 5 × 10−3 eV, T = 0.025 eV (curve 1); VA,O2 = 5 × 10−3 eV, T = 0.023 eV (curve 2); VA,O2 = 6 × 10−3 eV, T = 0.025 eV (curve 3); and VA,O2 = 5 × 10−3 eV, T = 0.025 eV (curve 4). Biophysical Journal 2015 109, 1735-1745DOI: (10.1016/j.bpj.2015.08.026) Copyright © 2015 Biophysical Society Terms and Conditions

Figure 5 Two-electron (a) and single-electron (b) exchange mechanisms responsible for T + T → S + S0 transitions between the jth and O2 molecules. Squares of respective transition matrix elements are given by Eqs. B8 and B12 (see the Supporting Material). If the j-O2 coupling is performed via superexchange pathways, then the respective matrix element is given by Eq. B14 (see the Supporting Material). Biophysical Journal 2015 109, 1735-1745DOI: (10.1016/j.bpj.2015.08.026) Copyright © 2015 Biophysical Society Terms and Conditions

Figure 6 A possible route for the oxygen-mediated triplet transfer from Chl a to β-carotene in the b6f complex (bold lines). It requires that the O2 molecule be interacting with the bn heme. Coupling to the A(Car) is performed through the participation of PR (O2-1-2(A) pathway) whereas the coupling of O2 with D(Chl a) includes two mediators, the PR and the Trp-molecule (O2-1-2(Trp)-3(D) pathway. Biophysical Journal 2015 109, 1735-1745DOI: (10.1016/j.bpj.2015.08.026) Copyright © 2015 Biophysical Society Terms and Conditions

Figure 7 Formation of superexchange tπx∗,L(j)(sup) and tH(j),πy∗(sup) couplings at transitions (a)O23(+1),3j∗(−1)→2O2−(πy∗,+12),2j+(−12) and (b) O2−2(πy∗,+12),2j+(−12)→1O2∗(πx∗),1j0. The transitions are associated with the HOMO and LUMO pathways (left and right columns, respectively). Biophysical Journal 2015 109, 1735-1745DOI: (10.1016/j.bpj.2015.08.026) Copyright © 2015 Biophysical Society Terms and Conditions