Azobenzene Photoisomerization-Induced Destabilization of B-DNA

Slides:



Advertisements
Similar presentations
Volume 84, Issue 4, Pages (April 2003)
Advertisements

Volume 98, Issue 2, Pages (January 2010)
Pedro R. Magalhães, Miguel Machuqueiro, António M. Baptista 
The Stretched Intermediate Model of B-Z DNA Transition
Volume 108, Issue 1, Pages (January 2015)
Retinal Conformation Changes Rhodopsin’s Dynamic Ensemble
Ching-Hsing Yu, Samuel Cukierman, Régis Pomès  Biophysical Journal 
Jing Han, Kristyna Pluhackova, Tsjerk A. Wassenaar, Rainer A. Böckmann 
Investigating How Peptide Length and a Pathogenic Mutation Modify the Structural Ensemble of Amyloid Beta Monomer  Yu-Shan Lin, Gregory R. Bowman, Kyle A.
Christopher Wostenberg, W.G. Noid, Scott A. Showalter 
Volume 92, Issue 11, Pages (June 2007)
Photochemical Reaction Dynamics of the Primary Event of Vision Studied by Means of a Hybrid Molecular Simulation  Shigehiko Hayashi, Emad Tajkhorshid,
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Topological Polymorphism of the Two-Start Chromatin Fiber
Relation between the Conformational Heterogeneity and Reaction Cycle of Ras: Molecular Simulation of Ras  Chigusa Kobayashi, Shinji Saito  Biophysical.
He Meng, Johan Bosman, Thijn van der Heijden, John van Noort 
Structural and Dynamic Properties of the Human Prion Protein
Po-Chao Wen, Emad Tajkhorshid  Biophysical Journal 
Volume 85, Issue 2, Pages (August 2003)
Large-Scale Conformational Dynamics of the HIV-1 Integrase Core Domain and Its Catalytic Loop Mutants  Matthew C. Lee, Jinxia Deng, James M. Briggs, Yong.
Liqun Zhang, Susmita Borthakur, Matthias Buck  Biophysical Journal 
Monika Sharma, Alexander V. Predeus, Nicholas Kovacs, Michael Feig 
Volume 107, Issue 3, Pages (August 2014)
Mechanism of the αβ Conformational Change in F1-ATPase after ATP Hydrolysis: Free- Energy Simulations  Yuko Ito, Mitsunori Ikeguchi  Biophysical Journal 
Influence of Protein Scaffold on Side-Chain Transfer Free Energies
Christian Kappel, Ulrich Zachariae, Nicole Dölker, Helmut Grubmüller 
A Second Look at Mini-Protein Stability: Analysis of FSD-1 Using Circular Dichroism, Differential Scanning Calorimetry, and Simulations  Jianwen A. Feng,
Molecular Recognition of CXCR4 by a Dual Tropic HIV-1 gp120 V3 Loop
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
G. Fiorin, A. Pastore, P. Carloni, M. Parrinello  Biophysical Journal 
Dániel Szöllősi, Gergely Szakács, Peter Chiba, Thomas Stockner 
Modeling the Alzheimer Aβ17-42 Fibril Architecture: Tight Intermolecular Sheet-Sheet Association and Intramolecular Hydrated Cavities  Jie Zheng, Hyunbum.
“DFG-Flip” in the Insulin Receptor Kinase Is Facilitated by a Helical Intermediate State of the Activation Loop  Harish Vashisth, Luca Maragliano, Cameron F.
Daniel Hoersch, Tanja Kortemme  Structure 
Volume 96, Issue 7, Pages (April 2009)
Volume 108, Issue 7, Pages (April 2015)
Jan Saam, Emad Tajkhorshid, Shigehiko Hayashi, Klaus Schulten 
Volume 89, Issue 4, Pages (October 2005)
Alexander J. Sodt, Richard W. Pastor  Biophysical Journal 
Functional Role of Ribosomal Signatures
Till Siebenmorgen, Martin Zacharias  Biophysical Journal 
Comparative Molecular Dynamics Simulation Studies of Protegrin-1 Monomer and Dimer in Two Different Lipid Bilayers  Huan Rui, Jinhyuk Lee, Wonpil Im 
Hisashi Ishida, Hidetoshi Kono  Biophysical Journal 
Protein Collective Motions Coupled to Ligand Migration in Myoglobin
Firdaus Samsudin, Alister Boags, Thomas J. Piggot, Syma Khalid 
Comparative Studies of Microtubule Mechanics with Two Competing Models Suggest Functional Roles of Alternative Tubulin Lateral Interactions  Zhanghan.
Volume 108, Issue 10, Pages (May 2015)
Jan Saam, Emad Tajkhorshid, Shigehiko Hayashi, Klaus Schulten 
Dissecting DNA-Histone Interactions in the Nucleosome by Molecular Dynamics Simulations of DNA Unwrapping  Ramona Ettig, Nick Kepper, Rene Stehr, Gero.
Histone Acetylation Regulates Chromatin Accessibility: Role of H4K16 in Inter- nucleosome Interaction  Ruihan Zhang, Jochen Erler, Jörg Langowski  Biophysical.
Replica Exchange Molecular Dynamics Simulations Provide Insight into Substrate Recognition by Small Heat Shock Proteins  Sunita Patel, Elizabeth Vierling,
Thomas H. Schmidt, Yahya Homsi, Thorsten Lang  Biophysical Journal 
Volume 98, Issue 12, Pages (June 2010)
Volume 111, Issue 1, Pages (July 2016)
Robust Driving Forces for Transmembrane Helix Packing
Volume 104, Issue 9, Pages (May 2013)
Volume 98, Issue 1, Pages (January 2010)
Christina Bergonzo, Thomas E. Cheatham  Biophysical Journal 
Toward a Consensus View of Duplex RNA Flexibility
Mechanism of Interaction between the General Anesthetic Halothane and a Model Ion Channel Protein, III: Molecular Dynamics Simulation Incorporating a.
Thérèse E. Malliavin, Jocelyne Gau, Karim Snoussi, Jean-Louis Leroy 
Analyzing the Flexibility of RNA Structures by Constraint Counting
Shayantani Mukherjee, Sean M. Law, Michael Feig  Biophysical Journal 
Christian Kappel, Ulrich Zachariae, Nicole Dölker, Helmut Grubmüller 
Hydrophobic Core Formation and Dehydration in Protein Folding Studied by Generalized-Ensemble Simulations  Takao Yoda, Yuji Sugita, Yuko Okamoto  Biophysical.
Volume 94, Issue 11, Pages (June 2008)
Volume 98, Issue 4, Pages (February 2010)
Molecular Dynamics Simulation of Bacteriorhodopsin's Photoisomerization Using Ab Initio Forces for the Excited Chromophore  Shigehiko Hayashi, Emad Tajkhorshid,
Progressive DNA Bending Is Made Possible by Gradual Changes in the Torsion Angle of the Glycosyl Bond  Leonardo Pardo, Nina Pastor, Harel Weinstein  Biophysical.
Volume 109, Issue 6, Pages (September 2015)
Presentation transcript:

Azobenzene Photoisomerization-Induced Destabilization of B-DNA Mithun Biswas, Irene Burghardt  Biophysical Journal  Volume 107, Issue 4, Pages 932-940 (August 2014) DOI: 10.1016/j.bpj.2014.06.044 Copyright © 2014 Biophysical Society Terms and Conditions

Figure 1 DNA oligomer with single or multiple azobenzenes attached to the backbone. (Box, magenta) Azobenzene unit with backbone and the L-threoninol linker. Azobenzene is shown in van der Waals representation. To see this figure in color, go online. Biophysical Journal 2014 107, 932-940DOI: (10.1016/j.bpj.2014.06.044) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 2 Schematic representation of the torsional potential for rotation around the CNNC dihedral. (Dotted orange line) Relaxation of azobenzene from S1 trans to S0 cis is driven along the diabatic potential. In the region 180° ≥ ϕCNNC ≥ 150° and 60° ≥ ϕCNNC ≥ 0°, the switching potential mimics S1 and S0, respectively, and in the range 150° ≥ ϕCNNC ≥ 60°, it is a smooth fit between the S1 and S0 torsional potentials. To see this figure in color, go online. Biophysical Journal 2014 107, 932-940DOI: (10.1016/j.bpj.2014.06.044) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 3 Photoisomerization of azobenzene in DNA environment. (A) RMSD of azobenzene non-hydrogen atoms from the initial trans conformation for five trajectories during relaxation from the trans excited to the cis ground state. The bridge-shaped transition intermediate has an RMSD of ∼0.8 Å. (B) Change of N1-C7-C4-N2 and N1-C7-C4-C5 dihedral angles during azobenzene photoisomerization in simulations showing that the bridge-shaped intermediate structure is formed due to a change of the N1-C7-C4-N2 angle followed by a twist of the N1-C7-C4-C5 angle about the axis joining C7–C4, resulting in the cis conformation. Change of the C14-C7-C4-C5 dihedral angle (∼50° on average) reflects that azobenzene isomerization does not occur through a pure rotation around the NN bond in the restricted DNA environment. To see this figure in color, go online. Biophysical Journal 2014 107, 932-940DOI: (10.1016/j.bpj.2014.06.044) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 4 Buried surface area (S) of azobenzene between neighboring bases during trans and cis simulations. (Dotted line) Estimation of S when azobenzene is visually stacked between neighboring bases. To see this figure in color, go online. Biophysical Journal 2014 107, 932-940DOI: (10.1016/j.bpj.2014.06.044) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 5 RMSF of ring atoms of azobenzene neighboring bases (upper→lower: 5′→3′) from the average structure calculated over simulation trajectory. The error bars indicate deviations of RMSF values calculated over two equal halves of the entire trajectory. To see this figure in color, go online. Biophysical Journal 2014 107, 932-940DOI: (10.1016/j.bpj.2014.06.044) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 6 Distribution of DNA basepair step (slide, tilt, twist, rise, shift, and roll) and helical (inclination, tip, and x- and y-displacement) parameters neglecting the basepair step(s) at the position(s) of azobenzene insertion and the terminal pairs of bases. Translational parameters are given in Ångstroms and rotational parameters in degrees. To see this figure in color, go online. Biophysical Journal 2014 107, 932-940DOI: (10.1016/j.bpj.2014.06.044) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 7 Distribution of slide and inclination obtained by progressively including azobenzene neighbors on both sides for a trans azobenzene attached to DNA. (Dotted line) Distributions of slide and inclination parameters for B-DNA. Biophysical Journal 2014 107, 932-940DOI: (10.1016/j.bpj.2014.06.044) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 8 Distribution of DNA backbone dihedral angles, the glycosidic χ-angle, and base sugar puckering. Highest populated puckering phase angles for A or B-DNA sugar conformations have been highlighted with colors (C3′-endo→ yellow, O1′-endo→ orange, C2′-endo→ blue). Translational parameters are given in Ångstroms and rotational parameters in degrees. To see this figure in color, go online. Biophysical Journal 2014 107, 932-940DOI: (10.1016/j.bpj.2014.06.044) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 9 Effect of thermal energy on azobenzene-attached DNA conformation and stability. Temperature fluctuation (standard deviation) around the mean is shown for simulations in the NVE ensemble. (A) Distribution of slide and inclination parameters at different temperatures with multiple copies and azobenzene and B-DNA. (Dotted lines) Simulations at an elevated temperature of 320 K. (B) Fraction of total number of hydrogen bonds present in a DNA oligomer during the simulation. (Upper panels) Hydrogen-bond fractions for B-DNA. To see this figure in color, go online. Biophysical Journal 2014 107, 932-940DOI: (10.1016/j.bpj.2014.06.044) Copyright © 2014 Biophysical Society Terms and Conditions