Volume 27, Issue 10, Pages e4 (May 2017)

Slides:



Advertisements
Similar presentations
Drosophila Neuroblasts Sequentially Express Transcription Factors which Specify the Temporal Identity of Their Neuronal Progeny  Takako Isshiki, Bret.
Advertisements

Kurt C. Marsden, Michael Granato  Cell Reports 
Volume 26, Issue 23, Pages (December 2016)
Functional Convergence at the Retinogeniculate Synapse
Pinky Kain, Anupama Dahanukar  Neuron 
Yan Zhu, Aljoscha Nern, S. Lawrence Zipursky, Mark A. Frye 
Nociceptive Neurons Protect Drosophila Larvae from Parasitoid Wasps
Volume 82, Issue 6, Pages (June 2014)
Volume 17, Issue 10, Pages (May 2007)
Volume 24, Issue 1, Pages (January 2017)
Seven-up Controls Switching of Transcription Factors that Specify Temporal Identities of Drosophila Neuroblasts  Makoto I. Kanai, Masataka Okabe, Yasushi.
Ingvars Birznieks, Richard M. Vickery  Current Biology 
Neuropeptide Y Regulates Sleep by Modulating Noradrenergic Signaling
Volume 87, Issue 6, Pages (September 2015)
Volume 91, Issue 3, Pages (August 2016)
Real-Time Visualization of Neuronal Activity during Perception
Starvation-Induced Depotentiation of Bitter Taste in Drosophila
Bennett Drew Ferris, Jonathan Green, Gaby Maimon  Current Biology 
Representations of Taste Modality in the Drosophila Brain
Volume 25, Issue 10, Pages (May 2015)
Volume 27, Issue 5, Pages (March 2017)
Volume 23, Issue 13, Pages (July 2013)
Tetsuya Koide, Yoichi Yabuki, Yoshihiro Yoshihara  Cell Reports 
Li E. Cheng, Wei Song, Loren L. Looger, Lily Yeh Jan, Yuh Nung Jan 
Volume 25, Issue 5, Pages e10 (October 2018)
Anterior-Posterior Gradient in Neural Stem and Daughter Cell Proliferation Governed by Spatial and Temporal Hox Control  Ignacio Monedero Cobeta, Behzad.
Huihui Zhou, Robert Desimone  Neuron 
Sensorimotor Decision Making in the Zebrafish Tectum
Kurt C. Marsden, Michael Granato  Cell Reports 
An AP2 Transcription Factor Is Required for a Sleep-Active Neuron to Induce Sleep-like Quiescence in C. elegans  Michal Turek, Ines Lewandrowski, Henrik.
Ascending SAG Neurons Control Sexual Receptivity of Drosophila Females
Dendritic Filopodia, Ripped Pocket, NOMPC, and NMDARs Contribute to the Sense of Touch in Drosophila Larvae  Asako Tsubouchi, Jason C. Caldwell, W. Daniel.
Vision Guides Selection of Freeze or Flight Defense Strategies in Mice
Walking Modulates Speed Sensitivity in Drosophila Motion Vision
A Group of Segmental Premotor Interneurons Regulates the Speed of Axial Locomotion in Drosophila Larvae  Hiroshi Kohsaka, Etsuko Takasu, Takako Morimoto,
Benjamin Scholl, Daniel E. Wilson, David Fitzpatrick  Neuron 
Georg B. Keller, Tobias Bonhoeffer, Mark Hübener  Neuron 
Non-overlapping Neural Networks in Hydra vulgaris
Katie S. Kindt, Gabriel Finch, Teresa Nicolson  Developmental Cell 
Feng Han, Natalia Caporale, Yang Dan  Neuron 
Left Habenular Activity Attenuates Fear Responses in Larval Zebrafish
Neural Circuit Components of the Drosophila OFF Motion Vision Pathway
Sleep-Stage-Specific Regulation of Cortical Excitation and Inhibition
An AP2 Transcription Factor Is Required for a Sleep-Active Neuron to Induce Sleep-like Quiescence in C. elegans  Michal Turek, Ines Lewandrowski, Henrik.
Volume 27, Issue 22, Pages e4 (November 2017)
Jillian L. Brechbiel, Elizabeth R. Gavis  Current Biology 
Benjamin J. Matthews, Wesley B. Grueber  Current Biology 
VRILLE Controls PDF Neuropeptide Accumulation and Arborization Rhythms in Small Ventrolateral Neurons to Drive Rhythmic Behavior in Drosophila  Kushan.
Volume 27, Issue 20, Pages e3 (October 2017)
Bonnie Chu, Vincent Chui, Kevin Mann, Michael D. Gordon 
Aljoscha Nern, Yan Zhu, S. Lawrence Zipursky  Neuron 
Volume 87, Issue 6, Pages (September 2015)
Kevin Mann, Michael D. Gordon, Kristin Scott  Neuron 
Volume 6, Issue 5, Pages (March 2014)
Volume 28, Issue 8, Pages e3 (April 2018)
Bettina Schnell, Ivo G. Ros, Michael H. Dickinson  Current Biology 
A Gradient in Synaptic Strength and Plasticity among Motoneurons Provides a Peripheral Mechanism for Locomotor Control  Wei-Chun Wang, Paul Brehm  Current.
Martin Häsemeyer, Nilay Yapici, Ulrike Heberlein, Barry J. Dickson 
Volume 25, Issue 5, Pages (March 2015)
Notch-Dependent Induction of Left/Right Asymmetry in C
Volume 22, Issue 3, Pages (March 1999)
Volume 22, Issue 19, Pages (October 2012)
Marie P. Suver, Akira Mamiya, Michael H. Dickinson  Current Biology 
Piezo-like Gene Regulates Locomotion in Drosophila Larvae
Volume 95, Issue 5, Pages e4 (August 2017)
Volume 28, Issue 6, Pages e3 (March 2018)
Volume 27, Issue 17, Pages e2 (September 2017)
Volume 25, Issue 6, Pages (March 2015)
Neural Circuitry that Evokes Escape Behavior upon Activation of Nociceptive Sensory Neurons in Drosophila Larvae  Jiro Yoshino, Rei K. Morikawa, Eri Hasegawa,
Different Levels of the Homeodomain Protein Cut Regulate Distinct Dendrite Branching Patterns of Drosophila Multidendritic Neurons  Wesley B Grueber,
Presentation transcript:

Volume 27, Issue 10, Pages 1521-1528.e4 (May 2017) Temporal Cohorts of Lineage-Related Neurons Perform Analogous Functions in Distinct Sensorimotor Circuits  Christopher C. Wreden, Julia L. Meng, Weidong Feng, Wanhao Chi, Zarion D. Marshall, Ellie S. Heckscher  Current Biology  Volume 27, Issue 10, Pages 1521-1528.e4 (May 2017) DOI: 10.1016/j.cub.2017.04.024 Copyright © 2017 Elsevier Ltd Terms and Conditions

Figure 1 ELs Can Be Subdivided into Early-Born and Late-Born Temporal Cohorts (A) Even-skipped (Eve) and R11F02 expression (segments A2–A4). (A′) Higher magnification of NB3-3 (arrow), Eve and R11F02 co-expression (dashes), and cells expressing only R11F02 (∗). (B) A schematic of R11F02 and Eve expression in NB3-3 and ELs. (C–E) R11F02(+) neurons (circled) co-express Nab (late-born, C), but not Pdm2/Kruppel (early-born, D and E). A single hemisegment shown with number of hemisegments (n) co-expressing two markers. (F–G′) Expression patterns for early-born or late-born ELs in larval nerve cords. (F′ and G′) Higher magnification with co-expression of Eve. In all images anterior up; scale bar, 10 μm; midline at arrowheads or on left. Genotypes were as follows: (A–E) R11F02-GAL4/UAS-nls-GFP, (F) R11F02-GAL80/UAS-myr-GFP; EL-GAL4/+, and (G) EL-AD/UAS-myr-GFP; R11F02-DBD/+. See Figure S1. Current Biology 2017 27, 1521-1528.e4DOI: (10.1016/j.cub.2017.04.024) Copyright © 2017 Elsevier Ltd Terms and Conditions

Figure 2 Stimulation of Late-Born versus Early-Born ELs Yields Distinct Behavioral Responses (A) A behavioral rig uses infrared (IR) light to illuminate larvae, which is detected by the camera. An amber LED stimulates optogenetic effectors (Light ON, amber in B–D and H–K). (B–D) Average (± SEM) larval speeds normalized to pre-stimulus speed for late-born ELs (B), early-born ELs (C), or all ELs (D). Experimental larvae with all-trans-retinal (+ATR, black) allow activation of optogenetic effectors; controls lack ATR (–ATR, gray). (E–G″) Behavior before (E) or during (F and G) stimulation. Images shown with anterior up and box width of 500 μm. (E′ and G′) X-Y time projection shows total movement. (E″ and G″) Schematics with gray lines representing trachea. In G″, trachea disappear below the body during rolling. (H and I) Instances of rolling for late-born ELs (H) and early-born ELs (I). Each row represents response of a larva. Each black box indicates larval rolling. (J and K) Proportion of larvae rolling for late-born ELs (J) and early-born ELs (K). Genotypes were as follows: late-borns (B, E, F, H, and J), EL-AD/+; R11F02-DBD/UAS-CsChrimson.mVenus; early-borns (C, G, I, and K), R11F02-GAL80/+; EL-GAL4/UAS-CsChrimson.mVenus; and all ELs (D), EL-GAL4/UAS-CsChrimson.mVenus. See Figure S2 and Movie S1. Current Biology 2017 27, 1521-1528.e4DOI: (10.1016/j.cub.2017.04.024) Copyright © 2017 Elsevier Ltd Terms and Conditions

Figure 3 A Majority of ELs Are Sensory Processing Interneurons (A and B) Examples of single-cell clones of early-born ELs (A and B) as visualized by light microscopy and their matching neurons in a TEM volume. Anterior up; midline (arrowhead). (C and D) Sensory neurons directly and indirectly synapse onto ELs: late-born (C) and early-born (D). Arrow thickness represents number of direct synaptic connections. (E and F) Schematic diagrams of late-born (E) and early-born EL (F) circuits, with neurons potentially related by lineage indicated in rounded boxes. ELs from NB3-3 shaded. Arrows represent direct connections. Current Biology 2017 27, 1521-1528.e4DOI: (10.1016/j.cub.2017.04.024) Copyright © 2017 Elsevier Ltd Terms and Conditions

Figure 4 Early-Born and Late-Born ELs Differentially Respond to Sound (A) Sound/vibration activates mechanosensitive chordotonal sensory neurons (Mechano CHOs) and causes larval hunching. (B) Behavioral arena used to record responses to stimulus (Sound ON, gray in C and D, and F and H). (C and D) Larvae hunch upon sound/vibration only when CHOs are present. Larvae before (left) or during (right) sound/vibration. Anterior up, head-to-tail larval length 3.5 mm (C and D). Average (± SEM) larval speeds normalized to pre-stimulus speed (C′ and D′) or larval perimeter normalized to pre-stimulus perimeter (C″ and D″). Genotypes were as follows: control (C; n = 14), UAS-RPR, UAS-HID/+; R11F02-DBD/+; and CHO ablation (D; n = 11), UAS-RPR, UAS-HID/+; IAV-GAL4/+. See Movie S2 and Audio S1. (E) The stimulus was played to a larva with the anterior portion, containing the CNS, immobilized and the posterior free. (F–H) Neuronal activity was monitored with GCaMP6s. Average (± SEM) change in fluorescence (ΔF/F) over time is shown, scale in H (F–H). Example responses to sound stimulation (F′ and H′). Fluorescence in pseudo color, red = maximum, blue = minimum. Anterior up; box width 72 μm. Genotypes were as follows: CHOs (F; n = 11), IAV-GAL4/UAS-syt-GCaMP6s; early-born ELs (G; n = 25), UAS-FLP, actin-FRT-stop-FRT-GAL4/+; R11F02-GAL80/UAS-syt-GCaMP6s; EL-GAL4/+; and late-born ELs (H; n = 17), UAS-FLP, actin-FRT-stop-FRT-GAL4/+; EL-AD/UAS-syt-GCaMP6s; R11F02-DBD/+. See Figure S3 and Movies S3 and S4. Current Biology 2017 27, 1521-1528.e4DOI: (10.1016/j.cub.2017.04.024) Copyright © 2017 Elsevier Ltd Terms and Conditions