Heiko Heerklotz, Joachim Seelig  Biophysical Journal 

Slides:



Advertisements
Similar presentations
Sandro Keller, Heiko Heerklotz, Nadin Jahnke, Alfred Blume 
Advertisements

Anmin Tan, André Ziegler, Bernhard Steinbauer, Joachim Seelig 
Ewa K. Krasnowska, Enrico Gratton, Tiziana Parasassi 
Ismail M. Hafez, Steven Ansell, Pieter R. Cullis  Biophysical Journal 
Thomas G. Anderson, Harden M. McConnell  Biophysical Journal 
Heat Capacity Effects on the Melting of DNA. 1. General Aspects
Dejun Lin, Alan Grossfield  Biophysical Journal 
Lars Kjaer, Lise Giehm, Thomas Heimburg, Daniel Otzen 
Binding of Calcium Ions to Bacteriorhodopsin
Volume 84, Issue 4, Pages (April 2003)
Christina E.B. Caesar, Elin K. Esbjörner, Per Lincoln, Bengt Nordén 
Volume 103, Issue 9, Pages (November 2012)
A Comprehensive Calorimetric Investigation of an Entropically Driven T Cell Receptor- Peptide/Major Histocompatibility Complex Interaction  Kathryn M.
Volume 95, Issue 6, Pages (September 2008)
Avanish S. Parmar, Martin Muschol  Biophysical Journal 
Volume 113, Issue 12, Pages (December 2017)
Equation of State for Phospholipid Self-Assembly
Hiren Patel, Quang Huynh, Dominik Bärlehner, Heiko Heerklotz 
Fluorescence Correlation Spectroscopy Close to a Fluctuating Membrane
Yuhong Xu, Sek-Wen Hui, Peter Frederik, Francis C. Szoka 
Binding the Mammalian High Mobility Group Protein AT-hook 2 to AT-Rich Deoxyoligonucleotides: Enthalpy-Entropy Compensation  Suzanne Joynt, Victor Morillo,
Reversible Liposome Association Induced by LAH4: A Peptide with Potent Antimicrobial and Nucleic Acid Transfection Activities  Arnaud Marquette, Bernard.
Volume 83, Issue 4, Pages (October 2002)
Volume 83, Issue 4, Pages (October 2002)
Christa Trandum, Peter Westh, Kent Jørgensen, Ole G. Mouritsen 
A Comprehensive Calorimetric Investigation of an Entropically Driven T Cell Receptor- Peptide/Major Histocompatibility Complex Interaction  Kathryn M.
Volume 99, Issue 8, Pages (October 2010)
Binding and Clustering of Glycosaminoglycans: A Common Property of Mono- and Multivalent Cell-Penetrating Compounds  André Ziegler, Joachim Seelig  Biophysical.
Volume 86, Issue 4, Pages (April 2004)
Avanish S. Parmar, Martin Muschol  Biophysical Journal 
Volume 112, Issue 2, Pages (January 2017)
Phosphatidylserine Inhibits and Calcium Promotes Model Membrane Fusion
Static Light Scattering From Concentrated Protein Solutions II: Experimental Test of Theory for Protein Mixtures and Weakly Self-Associating Proteins 
Physiological Pathway of Magnesium Influx in Rat Ventricular Myocytes
Actin Cytoskeleton-Dependent Dynamics of the Human Serotonin1A Receptor Correlates with Receptor Signaling  Sourav Ganguly, Thomas J. Pucadyil, Amitabha.
Factor Xa Binding to Phosphatidylserine-Containing Membranes Produces an Inactive Membrane-Bound Dimer  Tilen Koklic, Rinku Majumder, Gabriel E. Weinreb,
Volume 85, Issue 4, Pages (October 2003)
Molecular Competition for NKG2D
Volume 74, Issue 5, Pages (May 1998)
Kinetic and Energetic Analysis of Thermally Activated TRPV1 Channels
Ivan V. Polozov, Klaus Gawrisch  Biophysical Journal 
Fiber-Dependent and -Independent Toxicity of Islet Amyloid Polypeptide
Michael Katzer, William Stillwell  Biophysical Journal 
Volume 88, Issue 1, Pages (January 2005)
Alexander Sobolevsky, Sergey Koshelev  Biophysical Journal 
Thermodynamic Profiling of Peptide Membrane Interactions by Isothermal Titration Calorimetry: A Search for Pores and Micelles  J.R. Henriksen, T.L. Andresen 
Role of Cholesterol in the Formation and Nature of Lipid Rafts in Planar and Spherical Model Membranes  Jonathan M. Crane, Lukas K. Tamm  Biophysical.
B.M. Davis, J.L. Richens, P. O'Shea  Biophysical Journal 
Lipid Headgroups Modulate Membrane Insertion of pHLIP Peptide
Interaction of Verapamil with Lipid Membranes and P-Glycoprotein: Connecting Thermodynamics and Membrane Structure with Functional Activity  M. Meier,
Volume 89, Issue 1, Pages (July 2005)
Carlos Mattea, Johan Qvist, Bertil Halle  Biophysical Journal 
Volume 80, Issue 6, Pages (June 2001)
Thermodynamic Characterization of the Unfolding of the Prion Protein
Volume 108, Issue 2, Pages (January 2015)
Congju Chen, Irina M. Russu  Biophysical Journal 
Aditya Mittal, Eugenia Leikina, Leonid V. Chernomordik, Joe Bentz 
Philip J. Robinson, Teresa J.T. Pinheiro  Biophysical Journal 
Binding-Linked Protonation of a DNA Minor-Groove Agent
Volume 80, Issue 5, Pages (May 2001)
Cyclic AMP Diffusion Coefficient in Frog Olfactory Cilia
Ca2+ Regulation of Gelsolin Activity: Binding and Severing of F-actin
Volume 109, Issue 9, Pages (November 2015)
Rogert Bauer, Rita Carrotta, Christian Rischel, Lars Øgendal 
Andreas Fibich, Karl Janko, Hans-Jürgen Apell  Biophysical Journal 
Daniela Krüger, Jan Ebenhan, Stefan Werner, Kirsten Bacia 
Main Phase Transitions in Supported Lipid Single-Bilayer
Probing the Dynamics of Clot-Bound Thrombin at Venous Shear Rates
Ana Coutinho, Liana Silva, Alexander Fedorov, Manuel Prieto 
Volume 96, Issue 3, Pages (February 2009)
Presentation transcript:

Detergent-Like Action of the Antibiotic Peptide Surfactin on Lipid Membranes  Heiko Heerklotz, Joachim Seelig  Biophysical Journal  Volume 81, Issue 3, Pages 1547-1554 (September 2001) DOI: 10.1016/S0006-3495(01)75808-0 Copyright © 2001 The Biophysical Society Terms and Conditions

Figure 1 ITC demicellization experiments. (A). Raw data for a set of 7-μL injections of a 0.5-mM surfactin solution into buffer (10mM Tris, 100mM NaCl, pH 8.5) at 15°C, showing the heat flow per injection. (B) Heats of injection, δhi, per mole of surfactin injected, δni, versus the surfactin concentration in the cell, CS0 at 5°C (▾), 15°C (♢), 25°C (bold line, ●), 35°C (○), and 45°C (▴). (C) Normalized first derivative of the 25°C curve of (B). The maximum is defined as the CMC. Biophysical Journal 2001 81, 1547-1554DOI: (10.1016/S0006-3495(01)75808-0) Copyright © 2001 The Biophysical Society Terms and Conditions

Figure 2 (A, log scale) the critical micelle concentration, CMC, and (B) Temperature dependence of the enthalpy of micelle formation ΔHSuw→m. The data are taken from Fig. 1. The slope of the linear fit in (B) is ΔCPw→m=−(250±10) cal/(molK) and the isocaloric temperature is 41°C (solid line). The fit of log(CMC) versus T (solid line in A, cf. Kresheck, 1998) predicts the van’t Hoff enthalpy indicated by the dash/dot line in (B). Biophysical Journal 2001 81, 1547-1554DOI: (10.1016/S0006-3495(01)75808-0) Copyright © 2001 The Biophysical Society Terms and Conditions

Figure 3 Partitioning of surfactin into 100-nm POPC vesicles. (A) ITC experiment. Injection of 7.5-μL aliquots of lipid vesicles (2nm POPC) into a 7.5-μM surfactin solution. (B) The heat of reaction, δhi, divided by the molar amount of injected lipid is plotted versus the lipid concentration in the calorimeter cell, CL0. The different symbols refer to four different experiments with the following surfactin concentrations 5μM (▾), 7.5μM (○, □), 10μM (▴). The solid lines are theoretical fits according to Eq. 5 with the following parameters K=2.2×104 M−1, ΔHSuw→b=9.0 kcal/mol, qdil=−0.23 kcal/mol. (C) Variation of the surfactin (bound)-to-lipid ratio, Rb as a function of the lipid concentration in the calorimeter cell. The solid line SAT denotes the limiting detergent-to-lipid ratio at which membrane micellization occurs. Biophysical Journal 2001 81, 1547-1554DOI: (10.1016/S0006-3495(01)75808-0) Copyright © 2001 The Biophysical Society Terms and Conditions

Figure 4 Double logarithmic plot of the partition coefficient, K, versus the critical micelle concentration, CMC, of surfactin compared to C12EO9 (nonaethyleneglycol dodecyl ether), FOSMEA (dodecyl phospho-n-methylethanolamine) (details not shown) and other non-ionic surfactants as described in Heerklotz and Seelig (2000a). The diagonal line corresponds to K · CMC=1. An offset from the diagonal to lower K values (i.e., K ·CMC<1) indicates strong membrane destabilization by the respective compound. Biophysical Journal 2001 81, 1547-1554DOI: (10.1016/S0006-3495(01)75808-0) Copyright © 2001 The Biophysical Society Terms and Conditions

Figure 5 Correlation between the surfactant-to-lipid mole ratio in the membrane at the onset of solubilization, Rbsat, and the membrane destabilization specified in terms of K · CMC. Surfactin is compared to non-ionic surfactants as characterized in Heerklotz and Seelig (2000a). The bold line represents Rbsat=KCMC. Biophysical Journal 2001 81, 1547-1554DOI: (10.1016/S0006-3495(01)75808-0) Copyright © 2001 The Biophysical Society Terms and Conditions