GCSE Trigonometry Parts 3 and 4 – Trigonometric Graphs and Equations

Slides:



Advertisements
Similar presentations
Department of Mathematics University of Leicester
Advertisements

Trig for M2 © Christine Crisp.
GCSE Right-Angled Triangles Dr J Frost Last modified: 2 nd March 2014 Learning Objectives: To be able to find missing sides.
Solving Trigonometric Equations Involving Multiple Angles 6.3 JMerrill, 2009.
C1: Chapters 8 & 10 Trigonometry
IGCSE Solving Equations Dr J Frost Last modified: 23 rd August 2015 Objectives: From the specification:
Year 9 Trigonometry Dr J Frost Last modified: 2 nd November 2014.
43: Quadratic Trig Equations and Use of Identities © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
Trigonometry Trigonometric Identities.  An identity is an equation which is true for all values of the variable.  There are many trig identities that.
C2: Trigonometrical Identities
Aims: To know and learn 3 special trig identities. To be able to prove various trig identities To be able to solve angle problems by using Pythagoras.
IGCSE FM Trigonometry Dr J Frost Last modified: 18 th April 2016 Objectives: (from the specification)
6.1 – 6.5 Review!! Graph the following. State the important information. y = -3csc (2x) y = -cos (x + π/2) Solve for the following: sin x = 0.32 on [0,
Trigonometry II Harder Exact Values and Simple Trig Equations. By Mr Porter.
4.3 Right Triangle Trigonometry Objective: In this lesson you will learn how to evaluate trigonometric functions of acute angles and how to use the fundamental.
A. sin 30ºb. cos 30ºc. tan 30º d. sin 60ºe. cos 60ºf. tan 60º g. sin 45ºh. cos 45ºi. tan 45º COPY THE TRIANGLES AT RIGHT ONTO YOUR PAPER AND LABEL.
GCSE: Solving Quadratic Equations
GCSE/IGCSE-FM Functions
IGCSE FM/C1 Sketching Graphs
GCSE Right-Angled Triangles
IGCSE FM Trigonometry II
1.9 Inverse Trig Functions Obj: Graph Inverse Trig Functions
C1 Chapters 8 & 10 :: Trigonometry
Announcements & Reminders!
Trigonometric Identities II Double Angles.
Trigonometric Identities III Half Angles or t-formulae.
Trigonometry Lesson 3 Aims:
Analytic Trigonometry
7 Analytic Trigonometry
GCSE: Quadratic Simultaneous Equations
P2 Chapter 5 :: Radians
IGCSEFM Proof Dr J Frost Objectives: (from the specification)
Solving Trigonometric Equations
P1 Chapter 9 :: Trigonometric Ratios
IGCSE Completing the Square
P1 Chapter 10 :: Trigonometric Identities & Equations
IGCSEFM :: Domain/Range
…from now on this is strictly second year work
GCSE: Non-Right Angled Triangles
GCSE: Algebraic Fractions
Trigonometrical Identities
Further Trigonometric Identities and their Applications
TRIGONOMETRIC EQUATIONS
GCSE Trigonometry Part 1 – Right-Angled Triangles
P2 Chapter 5 :: Radians
Analytic Trigonometry
5.2 Proving Trigonometric Identities
Dr J Frost GCSE Iteration Dr J Frost Last modified:
IGCSE Further Maths/C1 Inequalities
FP2 Chapter 1 - Inequalities
Trigonometry.
P1 Chapter 10 :: Trigonometric Identities & Equations
P1 Chapter 10 :: Trigonometric Identities & Equations
GCSE: Tangents To Circles
Trigonometric Identities
IGCSE FM Algebraic Manipulation
Trig Equations.
IGCSEFM Proof Dr J Frost Objectives: (from the specification)
43: Quadratic Trig Equations and Use of Identities
GCSE :: Laws of Indices Dr J
C1 Discriminants (for Year 11s)
Important Idea r > 0 opp hyp adj hyp opp adj.
Trig Graphs And equations Revision.
CorePure2 Chapter 1 :: Complex Numbers
Analytic Trigonometry
Warm Up: No Calculators today!
Unit 3: Right Triangle Trigonometry
GCSE Exact Trigonometric Ratios
IGCSE Solving Equations
Presentation transcript:

GCSE Trigonometry Parts 3 and 4 – Trigonometric Graphs and Equations Dr J Frost (jfrost@tiffin.kingston.sch.uk) Objectives: (from the IGCSE FM specification) Last modified: 28th December 2016

Sin Graph What does it look like? ? -360 -270 -180 -90 90 180 270 360

Sin Graph ? ? ? sin(150) = 0.5 sin(-30) = -0.5 sin(210) = -0.5 What do the following graphs look like? -360 -270 -180 -90 90 180 270 360 Suppose we know that sin(30) = 0.5. By thinking about symmetry in the graph, how could we work out: sin(150) = 0.5 ? sin(-30) = -0.5 ? sin(210) = -0.5 ?

Cos Graph ? What do the following graphs look like? -360 -270 -180 -90

Cos Graph ? ? ? cos(120) = -0.5 cos(-60) = 0.5 cos(240) = -0.5 What does it look like? -360 -270 -180 -90 90 180 270 360 Suppose we know that cos(60) = 0.5. By thinking about symmetry in the graph, how could we work out: cos(120) = -0.5 ? cos(-60) = 0.5 ? cos(240) = -0.5 ?

Tan Graph What does it look like? ? -360 -270 -180 -90 90 180 270 360

Tan Graph ? ? tan(-30) = -1/√3 tan(150) = -1/√3 What does it look like? -360 -270 -180 -90 90 180 270 360 Suppose we know that tan(30) = 1/√3. By thinking about symmetry in the graph, how could we work out: tan(-30) = -1/√3 ? tan(150) = -1/√3 ?

Solving Trig Equations Solve sin 𝑥 =0.6 in the range 0≤𝑥<360 𝒙= 𝐬𝐢𝐧 −𝟏 𝟎.𝟔 =𝟑𝟔.𝟖𝟕°, 𝟏𝟒𝟑.𝟏𝟑° ? ? Angle Law #1: 𝐬𝐢𝐧 𝒙 =𝐬𝐢𝐧⁡(𝟏𝟖𝟎−𝒙) 0.6 𝟑𝟔.𝟖𝟕° ? -360 -270 -180 -90 90 180 270 360

Solving Trig Equations Solve 3cos 𝑥 =2 in the range 0≤𝑥<360 cos 𝑥 = 2 3 𝒙=𝒄𝒐 𝒔 −𝟏 𝟐 𝟑 =𝟒𝟖.𝟏𝟗°, 𝟑𝟏𝟏.𝟖𝟏° Angle Law #2: 𝒄𝒐𝒔 𝒙 =𝒄𝒐𝒔⁡(𝟑𝟔𝟎−𝒙) ? ? ? 𝟐 𝟑 𝟒𝟖.𝟏𝟗° ? -360 -270 -180 -90 90 180 270 360

Solving Trig Equations Solve sin 𝑥 =−0.3 in the range 0≤𝑥<360 𝒙= 𝐬𝐢𝐧 −𝟏 −𝟎.𝟑 =−𝟏𝟕.𝟒𝟔°, 𝟏𝟗𝟕.𝟒𝟔°, 𝟑𝟒𝟐.𝟓𝟒 ? ? Angle Law #3: Sin and cos repeat every 360° ? −𝟏𝟕.𝟒𝟔° ? -360 -270 -180 -90 90 180 270 360 -0.3

sin and cos repeat every 360° Laws of Trigonometric Functions ? ! sin 𝑥 = sin 180−𝑥 cos 𝑥 = cos 360−𝑥 ? sin and cos repeat every 360° ? tan repeats every 180° ? Solutions generally come in pairs (e.g. 30° and 150° for sin) for each ‘cycle’ of sin/cos. We can therefore get the next pair of solutions by going to the next cycle.

Test Your Understanding Solve cos 𝑥 =0.9 in the range 0≤𝑥<360 ? 𝑥= cos −1 0.9 =𝟐𝟓.𝟖𝟒° 360−25.84°=𝟑𝟑𝟒.𝟏𝟔° Solve tan 𝑥 =1 in the range 0≤𝑥<360 𝑥= tan −1 1 =𝟒𝟓° 45°+180°=𝟐𝟐𝟓° ? Set 4 Paper 2 Q14 sin 𝜃 =−0.68 → 𝜃=−42.84° 180−−42.84=𝟐𝟐𝟐.𝟖𝟒° −42.84+360=𝟑𝟏𝟕.𝟏𝟔° ?

Exercise 1 Solve the following in the range 0≤𝑥≤360 sin 𝑥 =0.5 → 𝒙=𝟑𝟎°, 𝟏𝟓𝟎° cos 𝑥 = 3 2 → 𝒙=𝟑𝟎°, 𝟑𝟑𝟎° tan 𝑥 = 3 → 𝒙=𝟔𝟎°, 𝟐𝟒𝟎° sin 𝑥 =0.1 → 𝒙=𝟓.𝟕𝟒°, 𝟏𝟕𝟒.𝟐𝟔° 4 cos 𝑥 =3 → 𝟒𝟏.𝟒𝟏°, 𝟑𝟏𝟖.𝟓𝟗° 6 tan 𝑥 =5 → 𝟑𝟗.𝟖𝟏°, 𝟐𝟏𝟗.𝟖𝟏° sin 𝑥 =0.4 → 𝟐𝟑.𝟓𝟖°, 𝟏𝟓𝟔.𝟒𝟐° sin 𝜃 =−0.5 → 𝟐𝟏𝟎°, 𝟑𝟑𝟎° cos 𝜃 =−0.5 → 𝟏𝟐𝟎°, 𝟐𝟒𝟎° tan 𝜃 =−1 → 𝟏𝟑𝟓°, 𝟑𝟏𝟓° sin 𝜃 =−0.4 → 𝟐𝟎𝟑.𝟓𝟖°, 𝟑𝟑𝟔.𝟒𝟐° cos 𝜃 =−0.7 → 𝟏𝟑𝟒.𝟒°, 𝟐𝟐𝟓.𝟔° tan 𝜃 =−0.2 → 𝟏𝟔𝟖.𝟔𝟗°, 𝟑𝟒𝟖.𝟔𝟗° 1 a ? b ? c ? d ? e ? f ? g ? 2 a ? b ? c ? d ? e ? f ?

1 sin 𝜃  cos⁡ Trigonometric Identities 𝒔𝒊 𝒏 𝟐 𝜽+𝒄𝒐 𝒔 𝟐 𝜽=𝟏 ? ? ? Using basic trigonometry to find these two missing sides… 1 sin 𝜃 ?  cos⁡ ? ? Then 𝒕𝒂𝒏 𝜽= 𝒔𝒊𝒏 𝜽 𝒄𝒐𝒔 𝜽 1 These two identities are all you will need for IGCSE FM. ? Pythagoras gives you... 𝒔𝒊 𝒏 𝟐 𝜽+𝒄𝒐 𝒔 𝟐 𝜽=𝟏 2 sin 2 𝜃 is a shorthand for sin 𝜃 2 . It does NOT mean the sin is being squared – this does not make sense as sin is not a quantity that we can square!

Application #1: Solving Harder Trig Equations Solve sin 𝑥 =2 cos 𝑥 in the range 0≤𝑥<360° The problem here is that we have two different trig functions. Is there anything we could divide by to get just one trig function? ? sin 𝑥 cos 𝑥 = 2 cos 𝑥 cos 𝑥 tan 𝑥 =2 𝑥=63.43°, 243.43° ? ? sin 𝑥 = sin 180−𝑥 cos 𝑥 = cos 360−𝑥 𝑠𝑖𝑛, 𝑐𝑜𝑠 repeat every 360 𝑡𝑎𝑛 repeats every 180 tan 𝑥 = sin 𝑥 cos 𝑥 sin 2 𝑥 + cos 2 𝑥 =1 Bro Tip: In general, when you have a mixture of sin and cos, divide everything by cos.

Test Your Understanding Solve 2 s𝑖𝑛 𝑥 = cos 𝑥 in the range 0≤𝑥<360° 2 tan 𝑥 =1 tan 𝑥 = 1 2 𝑥=26.57°, 206.57° ? Solve cos 𝑥 = sin 𝑥 in the range 0≤𝑥<360° 1= tan 𝑥 𝑥=45°, 225° ? sin 𝑥 = sin 180−𝑥 cos 𝑥 = cos 360−𝑥 𝑠𝑖𝑛, 𝑐𝑜𝑠 repeat every 360 𝑡𝑎𝑛 repeats every 180 tan 𝑥 = sin 𝑥 cos 𝑥 sin 2 𝑥 + cos 2 𝑥 =1

Application #1: Solving Harder Trig Equations June 2013 Paper 2 Q22 Solve tan 2 𝜃 +3 tan 𝜃 =0 in the range 0≤𝑥<360° This looks a bit like a quadratic. What would be our usual strategy to solve! ? tan 𝜃 tan 𝜃 +3 =0 tan 𝜃 =0 𝑜𝑟 tan 𝜃=−3 𝜃=0, 180, 108.43°, 288.4° ? ? sin 𝑥 = sin 180−𝑥 cos 𝑥 = cos 360−𝑥 𝑠𝑖𝑛, 𝑐𝑜𝑠 repeat every 360 𝑡𝑎𝑛 repeats every 180 tan 𝑥 = sin 𝑥 cos 𝑥 sin 2 𝑥 + cos 2 𝑥 =1

sin 𝜃 2 sin 𝜃 −1 =0 sin 𝜃=0 𝑜𝑟 sin 𝜃 = 1 2 𝜃=0, 180°, 30°, 150° More Examples Solve 2sin 2 𝜃 − sin 𝜃 =0 in the range 0≤𝑥<360° ? sin 𝜃 2 sin 𝜃 −1 =0 sin 𝜃=0 𝑜𝑟 sin 𝜃 = 1 2 𝜃=0, 180°, 30°, 150° Solve cos 2 𝜃 = 1 4 in the range 0≤𝑥<360° cos 𝜃 = 1 2 𝑜𝑟 cos 𝜃 =− 1 2 𝜃=60°, 300°, 120°, 240° ?

Test Your Understanding Solve cos 2 𝜃 + cos 𝜃 =0 in the range 0≤𝑥<360° ? cos 𝜃 cos 𝜃 +1 =0 cos 𝜃 =0 𝑜𝑟 cos 𝜃 =−1 𝜃=90°, 270°, 180° Expand and simplify (2𝑠+1)(𝑠−1). Hence or otherwise, solve 2 sin 2 𝜃 − sin 𝜃 −1=0 for 0°≤𝜃<360° 2 sin 𝜃 +1 sin 𝜃 −1 =0 sin 𝜃 =− 1 2 𝑜𝑟 sin 𝜃=1 𝜃=210°, 330°, 90° ?

Exercise 2 ? ? ? ? ? ? ? ? ? ? ? 1 Solve the following in the range 0°≤𝑥<360° sin 𝜃 =3 cos 𝜃 → 𝜽=𝟕𝟏.𝟓𝟕°, 𝟐𝟓𝟏.𝟓𝟕° 2 sin 𝜃 =3 cos 𝜃 → 𝜽=𝟓𝟔.𝟑𝟏°, 𝟐𝟑𝟔.𝟑𝟏° Solve the following by first factorising. 0°≤𝑥<360° cos 2 𝜃 − cos 𝜃 =0 → 𝜽=𝟗𝟎, 𝟐𝟕𝟎, 𝟎 tan 2 𝜃 −3 tan 𝜃 =0 → 𝜽=𝟎,𝟏𝟖𝟎,𝟕𝟏.𝟓𝟕, 𝟐𝟓𝟏.𝟓𝟕° sin 𝑥 cos 𝑥 + sin 𝑥 =0 → 𝜽=𝟎°, 𝟏𝟖𝟎° Solve the following: 0°≤𝑥<360° sin 2 𝜃 = 3 4 → 𝜽=𝟔𝟎°, 𝟏𝟐𝟎°, 𝟐𝟒𝟎°, 𝟑𝟎𝟎° cos 2 𝜃 = 3 4 →𝜽=𝟑𝟎°, 𝟏𝟓𝟎°, 𝟐𝟏𝟎°, 𝟑𝟑𝟎° tan 2 𝜃 =3 →𝜽=𝟔𝟎°, 𝟏𝟐𝟎°, 𝟐𝟒𝟎°, 𝟑𝟎𝟎° By factorising these ‘quadratics’, solve in the range 0≤𝑥<360 3 cos 2 𝜃 +2 cos 𝜃 −1=0 → 𝜽=𝟕𝟎.𝟓𝟑°, 𝟏𝟖𝟎°, 𝟐𝟖𝟗.𝟒𝟕° 6 sin 2 𝜃 − sin 𝜃 −1=0 → 𝜽=𝟑𝟎°, 𝟏𝟓𝟎°, 𝟏𝟗𝟗.𝟒𝟕°, 𝟑𝟒𝟎.𝟓𝟑° sin 𝜃 cos 𝜃 + sin 𝜃 + cos 𝜃 =−1 → 𝐬𝐢𝐧 𝜽 +𝟏 𝐜𝐨𝐬 𝜽 +𝟏 =𝟎 → 𝜽=𝟏𝟖𝟎°, 𝟐𝟕𝟎° a ? b ? 2 ? a ? b ? c 3 a ? b ? c ? 4 a ? b ? ? N

Review of what we’ve done so far   partly 

Application of identities #2: Proofs Prove that 1− tan 𝜃 sin 𝜃 cos 𝜃 ≡ cos 2 𝜃 Recall that ≡ means ‘equivalent to’, and just means the LHS is always equal to the RHS for all values of 𝜃. 𝐿𝐻𝑆=1− sin 𝜃 cos 𝜃 sin 𝜃 cos 𝜃 =1− sin 2 𝜃 𝑐𝑜𝑠𝜃 cos 𝜃 =1− sin 2 𝜃 = cos 2 𝜃 =𝑅𝐻𝑆 ? ? ? ? sin 𝑥 = sin 180−𝑥 cos 𝑥 = cos 360−𝑥 𝑠𝑖𝑛, 𝑐𝑜𝑠 repeat every 360 𝑡𝑎𝑛 repeats every 180 𝐭𝐚𝐧 𝒙 = 𝐬𝐢𝐧 𝒙 𝐜𝐨𝐬 𝒙 𝐬𝐢𝐧 𝟐 𝒙 + 𝐜𝐨𝐬 𝟐 𝒙 =𝟏 We want to use these…

Another Example ? ? ? ? Prove that tan 𝜃 + 1 tan 𝜃 ≡ 1 sin 𝜃 cos 𝜃 June 2012 Paper 1 Q16 Prove that tan 𝜃 + 1 tan 𝜃 ≡ 1 sin 𝜃 cos 𝜃 ? 𝐿𝐻𝑆= sin 𝜃 cos 𝜃 + cos 𝜃 sin 𝜃 = sin 2 𝜃 sin 𝜃 cos 𝜃 + cos 2 𝜃 sin 𝜃 cos 𝜃 = sin 2 𝜃 + cos 2 𝜃 sin 𝜃 cos 𝜃 = 1 sin 𝜃 cos 𝜃 =𝑅𝐻𝑆 Bro Tip: Whenever you have a fraction in a proof question, always add the fractions. ? ? ?

Test Your Understanding Prove that tan 𝑥 cos 𝑥 1− cos 2 𝑥 ≡1 = sin 𝑥 cos 𝑥 cos 𝑥 sin 2 𝑥 = sin 𝑥 sin 𝑥 =1 ? AQA Worksheet Prove that tan 2 𝜃 ≡ 1 cos 2 𝜃 −1 tan 2 𝜃 = sin 2 𝜃 cos 2 𝜃 = 1− cos 2 𝜃 cos 2 𝜃 = 1 cos 2 𝜃 − cos 2 𝜃 cos 2 𝜃 ?

Exercise 3 ? ? ? ? Simplify 3 sin 𝑥 sin 𝑥 +2 −3 2 sin 𝑥 − cos 2 𝑥 1 =𝟑 𝐬𝐢𝐧 𝟐 𝒙 +𝟔 𝐬𝐢𝐧 𝒙 −𝟔 𝐬𝐢𝐧 𝒙 +𝟑 𝐜𝐨𝐬 𝟐 𝒙 =𝟑 𝐬𝐢𝐧 𝟐 𝒙 + 𝐜𝐨𝐬 𝟐 𝒙 =𝟑 Write out the following in terms of sin 𝑥 : cos 2 𝑥 tan 2 𝑥 = 𝒄𝒐𝒔 𝟐 𝒙 𝐬𝐢𝐧 𝟐 𝒙 𝐜𝐨𝐬 𝟐 𝒙 = 𝐬𝐢𝐧 𝟐 𝒙 tan 𝑥 cos 3 𝑥 = 𝐬𝐢𝐧 𝒙 𝐜𝐨𝐬 𝒙 𝐜𝐨𝐬 𝟑 𝒙 = 𝐬𝐢𝐧 𝒙 𝐜𝐨𝐬 𝟐 𝒙 = 𝐬𝐢𝐧 𝒙 𝟏− 𝐬𝐢𝐧 𝟐 𝒙 cos 𝑥 2 cos 𝑥 −3 tan 𝑥 =𝟐 𝐜𝐨𝐬 𝟐 𝒙 −𝟑 𝐬𝐢𝐧 𝒙 =𝟐 𝟏− 𝐬𝐢𝐧 𝟐 𝒙 −𝟑 𝐬𝐢𝐧 𝒙 Prove the following: tan 𝑥 1− sin 2 𝑥 ≡ sin 𝑥 1− cos 2 𝑥 1− sin 2 𝑥 ≡ tan 2 𝑥 1+ sin 𝑥 1− sin 𝑥 ≡ cos 2 𝑥 2 sin 𝑥 cos 𝑥 tan 𝑥 ≡2−2 sin 2 𝑥 1 cos 𝜃 − cos 𝜃 ≡ sin 𝜃 tan 𝜃 2 sin 𝜃 − cos 𝜃 2 + sin 𝜃 +2 cos 𝜃 2 ≡5 1 ? 2 ? ? ? 3

Represent as a triangle Using triangles to change between sin/cos/tan Given that sin 𝜃 = 3 5 and that 𝜃 is acute, find the exact value of: cos 𝜃 = 𝟒 𝟓 tan 𝜃= 𝟑 𝟒 ? Represent as a triangle 5 ? ? 3 ? 𝜃 4 Test Your Understanding Given that tan 𝜃 = 5 2 and that 𝜃 is acute, find the value of: sin 𝜃 = 𝟓 𝟑 cos 𝜃= 𝟐 𝟑 Given that cos 𝜃 = 5 13 and that 𝜃 is acute, find the value of: sin 𝜃 = 𝟏𝟐 𝟏𝟑 tan 𝜃= 𝟏𝟐 𝟓 1 2 ? ? ? ?