21st IAEA/Fusion 2006 Meeting

Slides:



Advertisements
Similar presentations
Berkery – Kinetic Stabilization NSTX Jack Berkery Kinetic Effects on RWM Stabilization in NSTX: Initial Results Supported by Columbia U Comp-X General.
Advertisements

Study of tearing mode stability in the presence of external perturbed fields Experimental validation of MARS-K/Q and RDCON codes Z.R. Wang 1, J.-K. Park.
Confinement and Local Transport in the National Spherical Torus Experiment (NSTX) Stanley M. Kaye 1, M.G. Bell 1, R.E. Bell 1, C. W. Domier 2, W. Horton.
E D Fredrickson a, J Menard a, D. Stutman b, K. Tritz b a Princeton Plasma Physics Laboratory, NJ b Johns Hopkins University, MD 46 th Annual Meeting of.
NSTX-U T&T TSG Contributions to FY15 JRT NSTX-U Supported by Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U.
Development and characterization of intermediate- δ discharge with lithium coatings XP-919 Josh Kallman Final XP Review June 5, 2009 NSTX Supported by.
Raman, APS051 Solenoid-free Plasma Start-up in NSTX using Transient CHI R. Raman 1, T.R. Jarboe 1, B.A. Nelson 1, M.G. Bell 2, D.Mueller 2, R. Maqueda.
NSTX Status and Plans College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York.
NSTX XP830 review – J.W. Berkery J.W. Berkery, S.A. Sabbagh, H. Reimerdes Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL.
NSTX SAS – APS DPP ‘05 Supported by Office of Science S.A. Sabbagh 1, A.C. Sontag 1, W. Zhu 1, M.G. Bell 2, R. E. Bell 2, J. Bialek 1, D.A. Gates 2, A.
J. Manickam, C. Kessel and J. Menard Princeton Plasma Physics Laboratory Special thanks to R. Maingi, ORNL and S. Sabbagh, Columbia U. 45 th Annual Meeting.
NSTX Team Meeting May 28, 2008 Supported by Office of Science College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL.
Edge Stability of Small-ELM Regimes in NSTX Aaron Sontag J. Canik, R. Maingi, R. Bell, S. Gerhardt, S. Kubota, B. LeBlanc, J. Manickam, T. Osborne, P.
Non-axisymmetric Control Coil Upgrade and related ideas NSTX Supported by V1.0 Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U.
Current status of high k scattering system J. Kim 1, Y. Ren 2, K-C. Lee 3 and R. Kaita 2 1) POSTECH 2) PPPL 3) UC Davis NSTX Monday Physics Meeting LSB-318,
Supported by Office of Science NSTX S.M. Kaye for PPPL, U. Wisc., JHU, UCLA, UC Davis Groups NSTX-C-Mod Pedestal Workshop PPPL 7 Sept NSTX Capabilities.
1 Update on Run Schedule R. Raman NSTX Team Meeting PPPL, Princeton, NJ, 08 February, 2006 Work supported by DOE contract numbers DE-FG02-99ER54519 AM08,
Supported by Office of Science Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U.
NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U Tokyo JAEA Hebrew.
Supported by Office of Science Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U.
Radiative divertor with impurity seeding in NSTX V. A. Soukhanovskii (LLNL) Acknowledgements: NSTX Team NSTX Results Review Princeton, NJ Wednesday, 1.
NSTX Effects of NTSX Upgrades on DiagnosticsFebruary 8, NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL Johns.
Direct measurement of plasma response using Nyquist Contour Z.R. Wang 1, J.-K. Park 1, M. J. Lanctot 2, J. E. Menard 1,Y.Q. Liu 3, R. Nazikian 1 1 Princeton.
NSTX-U Supported by Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U Tokyo JAEA Inst for Nucl.
Supported by Office of Science NSTX S.M. Kaye, W. Solomon and the NSTX Group PPPL 22 nd Fusion Energy Conference Geneva, Switzerland Oct , 2008 Momentum.
Second Switching Power Amplifier (SPA) Upgrade Physics Considerations Discussion S.A. Sabbagh 1, and the NSTX Research Team 1 Department of Applied Physics,
DRM ISTW ‘07 1 Confinement, Transport and Turbulence Properties of NSTX Plasmas D. R. Mikkelsen, S.M. Kaye, R.E. Bell, B.P. LeBlanc, H. Park, G. Rewoldt,
1 R Raman, B.A. Nelson, D. Mueller 1, T.R. Jarboe, M.G. Bell 1, J. Menard 1, R. Maqueda 2 et al. University of Washington, Seattle 1 Princeton Plasma Physics.
Xp705: Multimode ion transport: TAE avalanches E D Fredrickson, N A Crocker, N N Gorelenkov, W W Heidbrink, S Kubota, F M Levinton, H Yuh, R E Bell NSTX.
NSTX WZ – XP524 - NSTX Results Review ‘05 Supported by Office of Science Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT.
Multi-Scale Transport and Turbulence Physics in NSTX Stanley M. Kaye For the NSTX Team Tokamak Planning Workshop PSFC, MIT Sept 17, 2007 Supported by Office.
Development of Improved Vertical Position Control S.P. Gerhardt, E. Kolemen ASC Session, NSTX 2011/12 Research Forum Location Date NSTX Supported by College.
1 Roger Raman for the NSTX Research Team University of Washington, Seattle NSTX Run Usage 27 February – 5 May, 2006 NSTX Mid-Run Assessment PPPL, Princeton,
Energy Confinement Scaling in the Low Aspect Ratio National Spherical Torus Experiment (NSTX) S. M. Kaye, M.G. Bell, R.E. Bell, E.D. Fredrickson, B.P.
XP1020: Determination of Weak RWM Stability Rotation Profiles J.W. Berkery, S.A. Sabbagh, H. Reimerdes Department of Applied Physics, Columbia University,
NSTX Team Meeting February 7, 2007 Supported by Office of Science College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U.
Supported by Office of Science NSTX H. Yuh (Nova Photonics) and the NSTX Group, PPPL Presented by S. Kaye 4 th T&C ITPA Meeting Culham Lab, UK March.
Development and characterization of intermediate- δ discharge with lithium coatings XP-919 Josh Kallman XP Review - ASC Feb 2, 2009 NSTX Supported by College.
Supported by Office of Science NSTX S.M. Kaye, PPPL For the NSTX Research Team ITPA T&C Mtg. Naka, Japan 31 March – 2 April 2009 The Effect of Rotation.
NSTX Team Meeting December 21, 2009 College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics.
NSTX XP1031: MHD/ELM stability vs. thermoelectric J, edge J, and collisionality -NSTX Physics Mtg. 6/28/10 - S.A. Sabbagh, et al. S.A. Sabbagh 1, T.E.
Enhancement of edge stability with lithium wall coatings in NSTX Rajesh Maingi, Oak Ridge National Lab R.E. Bell, B.P. LeBlanc, R. Kaita, H.W. Kugel, J.
Effect of 3-D fields on edge power/particle fluxes between and during ELMs (XP1026) A. Loarte, J-W. Ahn, J. M. Canik, R. Maingi, and J.-K. Park and the.
First results of fast IR camera diagnostic J-W. Ahn and R. Maingi ORNL NSTX Monday Physics Meeting LSB-318, PPPL June 22, 2009 NSTX Supported by College.
SMK – APS ‘06 1 NSTX Addresses Transport & Turbulence Issues Critical to Both Basic Toroidal Confinement and Future Devices NSTX offers a novel view into.
Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL PSI SNL UC Davis UC Irvine UCLA.
NSTX NSTX LidsJuly 6, NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL Johns Hopkins U LANL LLNL Lodestar.
NSTX Sabbagh/Shaing S. A. Sabbagh 1, K.C. Shaing 2, et al. XP743: Island-induced neoclassical toroidal viscosity and dependence on i Supported by Columbia.
Supported by Office of Science NSTX S.M. Kaye, PPPL ITPA PPPL 5-7 Oct Confinement and Transport in NSTX: Lithiumized vs non-Lithiumized Plasmas Culham.
Global Mode Stability and Active Control in NSTX S.A. Sabbagh 1, J.W. Berkery 1, R.E. Bell 2, J.M. Bialek 1, S. Gerhardt 2, R. Betti 3, D.A. Gates 2, B.
V. A. Soukhanovskii, NSTX FY2010 Results Review, Princeton, NJ 1 of 31 Boundary Physics Topical Science Group summary V. A. Soukhanovskii, TSG Leader Lawrence.
Planning for Toroidal Lithium Divertor Target for NSTX and Supporting Experiments on CDX-U/LTX R. Kaita Boundary Physics Science Focus Group Meeting July.
NSTX 2007 MHD XP Review – J. Menard 1 Optimization of RFA detection algorithms during dynamic error field correction Presented by: J.E. Menard, PPPL Final.
XP-945: ELM Pacing via Vertical Position Jogs S.P. Gerhardt, J.M. Canik, D. Gates, R. Goldston, R. Hawryluk, R. Maingi, J. Menard, S. Sabbagh, A. Sontag.
Stanley M. Kaye PPPL, Princeton University R. Bell, C. Bourdelle, B. LeBlanc, S. Paul, M. Redi, S. Sabbagh, D. Stutman APS-DPP Meeting Albuquerque, N.M.
Preliminary Results from XP1020 RFA Measurements J.W. Berkery Department of Applied Physics, Columbia University, New York, NY, USA NSTX Monday Physics.
Research Plan for Transport and Turbulence Physics in NSTX K. Tritz, JHU S. Kaye, PPPL and the NSTX Research Team NSTX PAC-25 LSB B318 February ,
Research Plan for Multi- Scale Transport and Turbulence Physics in NSTX Stanley M. Kaye For the NSTX Team Tokamak Planning Workshop PSFC, MIT.
Raman, Dec051 Solenoid-free Plasma Start-up in NSTX using Transient CHI R. Raman 1, T.R. Jarboe 1, B.A. Nelson 1, M.G. Bell 2, D.Mueller 2, R. Maqueda.
V. A. Soukhanovskii, XP1002 Review, 9 June 2010, Princeton, NJ 1 of 9 XP 1002: Core impurity density and P rad reduction using divertor condition modifications.
Advanced Scenario Development on NSTX D. A. Gates, PPPL For the NSTX Research Team 50th APS-DPP meeting Dallas, TX November 17, 2008 College W&M Colorado.
1 Roger Raman for the NSTX Research Team University of Washington, Seattle Update on the NSTX Run Plan PPPL, Princeton, NJ, 15 May, 2006 Supported by Office.
Monitoring impact of the LLD Adam McLean, ORNL T. Gray, R. Maingi Lithium, TSG group preliminary research forum PPPL, B252 Nov. 23, 2009 NSTX Supported.
Correlation between Electron Transport and Shear Alfven Activity in NSTX College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins.
Supported by Office of Science NSTX K. Tritz, S. Kaye PPPL 2009 NSTX Research Forum PPPL, Princeton University Dec. 8-10, 2008 Transport and Turbulence.
Supported by Office of Science NSTX S.M. Kaye, PPPL For the NSTX Research Team T&C ITPA Mtg. Naka, Japan 31 March – 2 April 2009 Electron Scale Turbulence.
XP-950: XP-950: Dependence of metallic impurity accumulation on I p and the outer gap in the presence of lithium deposition S. Paul, S. P. Gerhardt are.
NSTX NSTX Upgrade Project – Final Design ReviewJune 22-24, NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL.
NSTX S.A. Sabbagh S.A. Sabbagh 1, R.E. Bell 2, J.E. Menard 2, D.A. Gates 2, J.M. Bialek 1, B. LeBlanc 2, F. Levinton 3, K. Tritz 4, H. Yu 3 XP728: RWM.
High Harmonic Fast Wave Deposition and Heating Results in NSTX*
Presentation transcript:

21st IAEA/Fusion 2006 Meeting Supported by Office of Science Confinement and Local Transport in the National Spherical Torus Experiment (NSTX) College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U SNL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD U Colorado U Maryland U Rochester U Washington U Wisconsin Stanley M. Kaye1, M.G. Bell1, R.E. Bell1, C. W. Domier2, W. Horton3, J. Kim3, B.P. LeBlanc1, F. Levinton4,N.C. Luhmann2, R. Maingi5, E. Mazzucato1, J.E. Menard1, D.R. Mikkelsen1, H. Park1, G. Rewoldt1, S.A. Sabbagh6, D. Smith1, D. Stutman7, K. Tritz7, W. Wang1, H. Yuh4 21st IAEA/Fusion 2006 Meeting Oct 16 – 21, 2006 Chengdu, China 1 PPPL, Princeton University, Princeton, NJ, USA 08543 2 University of California, Davis, CA, USA 95616 3 IFS, University of Texas, Austin, TX, USA 78712 4 Nova Photonics Inc., Princeton, NJ, USA, 08540 5 ORNL, Oak Ridge, TN, USA 37831 6 Dept. of Applied Physics, Columbia University, NYC, NY, USA 10027 7 The Johns Hopkins University, Baltimore MD 21218 Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U Tokyo JAERI Hebrew U Ioffe Inst RRC Kurchatov Inst TRINITI KBSI KAIST ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep U Quebec

NSTX Addresses Transport & Turbulence Issues Critical to Both Basic Toroidal Confinement and Future Devices NSTX offers a novel view into plasma T&T properties NSTX operates in a unique part of dimensionless parameter space: R/a, bT, (r*, n*) Dominant electron heating with NBI: relevant to a-heating in ITER Excellent laboratory in which to study electron transport: electron transport anomalous, ions close to neoclassical Large range of bT spanning e-s to e-m turbulence regimes Strong rotational shear that can influence transport Localized electron-scale turbulence measurable (re ~ 0.1 mm) Major Radius R0 0.85 m Aspect Ratio A 1.3 Elongation k 2.8 Triangularity d 0.8 Plasma Current Ip 1.5 MA Toroidal Field BT 0.55 T Pulse Length 1.5 s NB Heating (100 keV) 7 MW bT,tot up to 40% SMK – 21st IAEA 2

This Presentation Will Focus on Confinement & Transport Trends in NSTX and Their Underlying Processes Major accomplishments Key confinement and transport dependences established (BT, Ip, b, n*, q(r),…) High priority ITPA tasks have been addressed Dimensionless parameter scans in bT, ne* Established more accurate e (=a/R) scaling with NSTX (& MAST) data included in the ITPA database t98y2~Ip0.93 BT0.15 ne0.41 P-0.69 R1.97 e0.58… tnew~Ip0.73 BT0.36 ne0.39 P-0.62 R2.14 e1.03 (Kaye et al., PPCF 48 [2006] A429) Localized turbulence characteristics being assessed across wide range of k (upper ITG/TEM to ETG) Theory/simulations have indicated ETG modes could be important in controlling electron transport SMK – 21st IAEA 3

Dimensionless Parameter Scans Have Addressed High-Priority ITPA Issues b-scan at fixed q, BT - b-dependence important to ITER advanced scenarios (Bt98y2~b-0.9) - Factor of 2-2.5 variation in bT - Degradation of tE with b weak on NSTX ne*-scan at fixed q - Factor of >3 variation in ne* - Strong increase of confinement with decreasing collisionality 20% variation in re, ne* k=2.1 d=0.6 SMK – 21st IAEA 4

Dedicated H-mode Confinement Scaling Experiments Have Isolated the BT and Ip Dependences Scans carried out at constant density, injected power (4 MW) 0.50 s 0.50 s SMK – 21st IAEA 5

Dedicated H-mode Confinement Scaling Experiments Have Revealed Some Surprises Strong dependence of tE on BT Weaker dependence on Ip H98y,2 ~ 0.9 → 1.1 → 1.4 H98y,2 ~ 1.4 → 1.3 → 1.1 4 MW 4 MW tE,98y,2 ~ BT0.15 tE,98y,2 ~ Ip0.93 NSTX tE exhibits strong scaling at fixed q tE~Ip1.3-1.5 at fixed q tE,98y,2~Ip1.1 at fixed q SMK – 21st IAEA 6

Variation of Electron Transport Primarily Responsible for BT Scaling Broadening of Te & reduction in ce outside r/a=0.5 with increasing BT Ions near neoclassical Neoclassical SMK – 21st IAEA 7

Theory/Gyrokinetic Calculations Suggest ETG May Play an Important Role in Determining Electron Transport at Low BT ETG linearly unstable only at lowest BT - 0.35 T: R/LTe 20% above critical gradient - 0.45, 0.55 T: R/LTe 20-30% below critical gradient Non-linear simulations indicate formation of radial streamers (up to 200re): FLR-modified fluid code [Horton et al., PoP 2005] GS2 0.35 T Kim, IFS Good agreement between experimental and theoretical saturated transport level at 0.35 T Experimental ce profile consistent with that predicted by e-m ETG theory [Horton et al., NF 2004] at 0.35 T Not at higher BT SMK – 21st IAEA 8

Ion Transport Primarily Governs Ip Scaling - Ions Near Neoclassical Level - GTC-Neo neoclassical: includes finite banana width effects (non-local) ci,GTC-NEO (r/a=0.5-0.8) SMK – 21st IAEA 9

Turbulence Measurements + Gyrokinetic Calculations Have Helped Identify Possible Sources of Transport Microwave scattering system measures reduced fluctuations (n/n) in both upper ITG/TEM and ETG ranges during H-mode ~ Ion and electron transport change going from L- to H-modes ELMs Electron transport reduced, but remains anomalous Ion transport during H-phase is neoclassical - Localized measurement (axis to edge) - Excellent radial resolution (6 cm) SMK – 21st IAEA 10

Theory/Gyrokinetic Calculations Indicate Both ITG/TEM and ETG are Possible Candidates for Electron Transport GS2 calculations indicate lower linear growth rates at all wavenumbers during H- than during L-phase: ETG unstable Non-linear GTC results indicate ITG modes stable during H-phase; ci ~ neoclassical Experimental ce profile consistent with that predicted by e-s ETG theory (Horton et al, Phys. Plasmas [2004]) SMK – 21st IAEA 11

NSTX Plays a Key Role in Multi-Scale Transport & Turbulence Research Confinement and transport trends found to differ from those at higher R/a Strong BT, weaker Ip scaling Electron transport variation primarily responsible for BT scaling Ions near neoclassical; primarily responsible for Ip scaling Understand the source of the difference in confinement trends at different R/a (low vs high-k turbulence dominant at different R/a, BT?) Data provided to ITPA H-mode database for R/a and bT scalings No degradation of BtE with bT n/n decreases from L- to H-phase for kr=2 to 24 cm-1 (upper ITG/TEM to ETG range) – Associated with reduction in transport Linear and non-linear theory have indicated ETG modes could be important – Need also to consider lower-k modes (microtearing, ITG/TEM) ~ SMK – 21st IAEA 12

Backup Vugraphs SMK – 21st IAEA 13

New Diagnostic Capabilities Have Facilitated Progress in Understanding Transport Processes 51-point CHERS 20-point MPTS 12 channel MSE [NOVA Photonics] LRDFIT Reconstruction Rmag Important for equilibrium and microinstability calculations Tangential microwave scattering measures localized electron-scale turbulence kr=2 (upper ITG/TEM) to ~24 (ETG) cm-1 re ~0.01 cm Dr ~ 6 cm Dk ~ 1 cm-1 Can vary location of scattering volume (near Rmag to near edge) SMK – 21st IAEA 14

New Diagnostic Capabilities Have Facilitated Progress in Understanding Transport Processes Tangential micorwave scattering measures localized electron-scale turbulence 12 channel MSE [NOVA Photonics] kr=2 (upper ITG/TEM) to ~24 (ETG) cm-1 re ~0.01 cm Dr ~ 6 cm Dk ~ 1 cm-1 Can vary location of scattering volume (near Rmag to near edge) LRDFIT Reconstruction Important for equilibrium and microinstability calculations SMK – 21st IAEA 15

Dimensionless Variable Scans Have Addressed High Priority ITPA Physics Issues (e, b - scaling) ITER98PB(y,2) scaling does not represent low R/a data well b-scan at fixed re, ne* - b-dependence important to ITER advanced scenarios (Bt98y2~b-0.9) - Degradation of tE with b weak on NSTX 20% variation in re, ne* NSTX data used in conjunction with ITPA data to establish e (=a/R) scaling with more confidence t98y2~Ip0.93BT0.15ne0.41P-0.69R1.97e0.58… tnew~Ip0.73BT0.36ne0.39P-0.62R2.14e1.03 (Kaye et al., PPCF 48 [2006] A429) 2-2.5 variation in bT SMK – 21st IAEA 16

Stronger Reversed Magnetic Shear Is Associated with Reduced Transport Weak vs Reverse-Shear L-mode Global non-linear GTC and GYRO simulations show that a pure ITG mode is unstable without ExB flow shear included TEM & ETG calculations underway SMK – 21st IAEA 17

Pellet Perturbations Are Being Used to Probe Relation of Critical Gradient Physics to q-Profile Soft X-ray array diagnoses fast DTe R/LTe t=440→444 ms H-mode with monotonic q-profile exhibits stiff profile behavior → Te close to marginal stability R/LTe t=297→301 ms Reversed magnetic shear L-mode responds to pellet perturbation over several ms Stutman, JHU SMK – 21st IAEA 18