CSCE 211: Digital Logic Design Chin-Tser Huang huangct@cse.sc.edu University of South Carolina
Chapter 7: The Design of Sequential Systems
Review: Design Process for Combinational Systems Step 1: Represent each of the inputs and output in binary. Step 1.5: If necessary, break the problem into smaller subproblems. Step 2: Formalize the design specification either in the form of a truth table or of an algebraic expression. Step 3: Simplify the description. Step 4: Implement the system with the available components, subject to the design objectives and constraints. 11/24/2015
Design Process for Sequential Systems Step 1: From a word description, determine what needs to be stored in memory, that is, what are the possible states. Step 2: If necessary, code the inputs and outputs in binary. Step 3: Derive a state table or state diagram to describe the behavior of the system. Step 4: Choose a state assignment, that is, code the states in binary. Step 5: Choose a flip flop type and derive the flip flop input maps or tables. Step 6: Produce the logic equation and draw a block diagram (as in the case of combinational systems). 11/24/2015
Revisit Continuing Example 6 CE6. A system with one input x and one output z such that z = 1 iff x has been 1 for at least three consecutive clock times. 11/24/2015
We use assignment (a) in our discussion of CE6. State Assignment of CE 6 We use assignment (a) in our discussion of CE6. 11/24/2015
Design and Output Truth Table of CE6 11/24/2015
K-map for Next State q1* = x q2 + x q1 q2* = x q2´ + x q1 11/24/2015
K-map for Output z = q1 q2 11/24/2015
Design with D Flip Flops Therefore, D1 = x q2 + x q1 D2 = x q´2 + x q1 11/24/2015
Implementation using D Flip Flops 11/24/2015
Design with JK Flip Flops 11/24/2015
Design with JK Flip Flops J1 = xq2 K1 = x´ z = q1q2 J2 = x K2 = x´ + q´1 11/24/2015
Design with T Flip Flops T1 = x´q1 + xq´1q2 z = q1q2 T2 = x´q2 + xq´2 + xq´1q2 11/24/2015
Synchronous Counter A synchronous counter is a device with no data input that goes through a fixed sequence of states on successive clocks The output is often just the state of the system, i.e., the contents of all of the flip flops So no output column is required in the state table 11/24/2015
Example: 4-bit Binary Counter 11/24/2015
Design with JK Flip Flops 11/24/2015
Another Example: Up/Down Counter A counter that can count up or down according to a control input Counts up when x=0 Counts down when x=1 11/24/2015
Design with JK Flip Flops JA = KA = 1 JB = KB = x´A + xA´ JC = KC = x´BA + xB´A´ 11/24/2015
Design with JK Flip Flops 11/24/2015
Another Example: Decimal Counter A decimal counter goes through the sequence 0 1 2 3 4 5 6 7 8 9 0 1 … Can you develop the truth table and then K-maps for the next state of each bit? 11/24/2015