Fuzzy Color Histogram and Its Use in Color Image retrieval

Slides:



Advertisements
Similar presentations
Image Retrieval With Relevant Feedback Hayati Cam & Ozge Cavus IMAGE RETRIEVAL WITH RELEVANCE FEEDBACK Hayati CAM Ozge CAVUS.
Advertisements

Reversible Data Hiding Based on Two-Dimensional Prediction Errors
Particle Swarm Optimization (PSO)  Kennedy, J., Eberhart, R. C. (1995). Particle swarm optimization. Proc. IEEE International Conference.
Image Denoising using Locally Learned Dictionaries Priyam Chatterjee Peyman Milanfar Dept. of Electrical Engineering University of California, Santa Cruz.
IEEE TCSVT 2011 Wonjun Kim Chanho Jung Changick Kim
Efficient Moving Object Segmentation Algorithm Using Background Registration Technique Shao-Yi Chien, Shyh-Yih Ma, and Liang-Gee Chen, Fellow, IEEE Hsin-Hua.
Image Segmentation Image segmentation is the operation of partitioning an image into a collection of connected sets of pixels. 1. into regions, which usually.
Region Segmentation Readings: Chapter 10: 10.1 Additional Materials Provided K-means Clustering (text) EM Clustering (paper) Graph Partitioning (text)
Multimedia Network Security Lab. On STUT Adaptive Weighting Color Palette Image Speaker:Jiin-Chiou Cheng Date:99/12/16.
1 Lucia Maddalena and Alfredo Petrosino, Senior Member, IEEE A Self-Organizing Approach to Background Subtraction for Visual Surveillance Applications.
1 Iterative Multimodel Subimage Binarization for Handwritten Character Segmentation Author: Amer Dawoud and Mohamed S. Kamel Source: IEEE TRANSACTIONS.
1 Multiple Classifier Based on Fuzzy C-Means for a Flower Image Retrieval Keita Fukuda, Tetsuya Takiguchi, Yasuo Ariki Graduate School of Engineering,
Color Image Segmentation Speaker: Deng Huipeng 25th Oct , 2007.
Bo QIN, Zongshun MA, Zhenghua FANG, Shengke WANG Computer-Aided Design and Computer Graphics, th IEEE International Conference on, p Presenter.
Image Emotional Semantic Query Based On Color Semantic Description Wei-Ning Wang, Ying-Lin Yu Department of Electronic and Information Engineering, South.
An Effective Three-step Search Algorithm for Motion Estimation
Advanced Science and Technology Letters Vol.28 (EEC 2013), pp Histogram Equalization- Based Color Image.
Improved Census Transforms for Resource-Optimized Stereo Vision
A Recognition Method of Restricted Hand Shapes in Still Image and Moving Image Hand Shapes in Still Image and Moving Image as a Man-Machine Interface Speaker.
研 究 生:周暘庭 Q36994477 電腦與通信工程研究所 通訊與網路組 指導教授 :楊家輝 Mean-Shift-Based Color Tracking in Illuminance Change.
Given a set of data points as input Randomly assign each point to one of the k clusters Repeat until convergence – Calculate model of each of the k clusters.
May 2003 SUT Color image segmentation – an innovative approach Amin Fazel May 2003 Sharif University of Technology Course Presentation base on a paper.
Shadow Detection in Remotely Sensed Images Based on Self-Adaptive Feature Selection Jiahang Liu, Tao Fang, and Deren Li IEEE TRANSACTIONS ON GEOSCIENCE.
Flame and smoke detection method for early real-time detection of a tunnel fire Adviser: Yu-Chiang Li Speaker: Wei-Cheng Wu Date: 2009/09/23 Fire Safety.
Der-Chyuan Lou and Jiang-Lung Liu,
Reporter :Liang, Min-Chen Date :2003/04/15
Source: Multimed Tools Appl (2017) 76:1875–1899
Image Retrieval Based on Regions of Interest
Face recognition using improved local texture pattern
Lossy Compression of DNA Microarray Images
Image camouflage by reversible image transformation
2003/04/291 Hiding data in images by optimal moderately- significant-bit replacement Wang, Ran-Zan, Lin, Chi-Fang, and Lin, Ja-Chen, IEE Electronics Letters,
Small target detection combining regional stability
Reversible data hiding with contrast enhancement using adaptive histogram shifting and pixel value ordering Source: Signal Processing: Image Communication.
MOTION ESTIMATION AND VIDEO COMPRESSION
Centrality Bias Measure for High Density QR Code Module Recognition
Mean value based reversible data hiding in encrypted images
Source:Multimedia Tools and Applications, Vol. 77, No. 20, pp , Oct
Small target detection combining regional stability
Source: Pattern Recognition, Vol. 38, Issue 11, December 2005, pp
Source: Pattern Recognition Vol. 38, May, 2005, pp
Improved joint reversible data hiding in encrypted images
Source: Signal Processing, Vol. 125, pp , August 2016.
Source : Journal of Visual Communication and Image Representation, vol
Color Image Retrieval based on Primitives of Color Moments
Reporter :Liang, Min-Chen Date :2003/05/06
A Self-Reference Watermarking Scheme Based on Wet Paper Coding
Speaker: YI-JIA HUANG Date: 2011/12/08 Authors: C. N
Source : Journal of Visual Communication and Image Representation, vol
A Data-Hiding Technique with Authentication, Integration, and Confidentiality for Electronic Patient Records Chao, Hui-Mei, Hsu, Chin-Ming, and Miaou,
Authors: Chin-Chen Chang, Yi-Hui Chen, and Chia-Chen Lin
Reporter :Liang, Min-Chen Date :2003/05/06
Reporter :Liang, Min-Chen Date :2003/05/06
Source:Multimedia Tools and Applications, Vol. 77, No. 20, pp , Oct
Data hiding method using image interpolation
A Dynamic Histogram Equalization for Image Contrast Enhancement
Source: Signal Processing: Image Communication 16 (2001) pp
A Data-Hiding Technique With Authentication, Integration, and Confidentiality for Electronic Patient Records Chao, Hui-Mei, Hsu, Chin-Ming, and Miaou,
Source: J. Vis. Commun. Image R. 31 (2015) 64–74
A Self-Reference Watermarking Scheme Based on Wet Paper Coding
Unconstraint Optimal Selection of Side Information for Histogram Shifting Based Reversible Data Hiding Source:  IEEE Access. March, doi: /ACCESS
Source: IEEE Transactions on Circuits and Systems,
Sourse: Information Sciences, Vol. 494, pp , August 2019
Authors: Chin-Chen Chang, Yi-Hui Chen, and Chia-Chen Lin
Source : Digital Signal Processing. Vol. 73, pp , Feb
An Efficient Spatial Prediction-Based Image Compression Scheme
LSB matching revisited
Lossless Data Hiding in the Spatial Domain for High Quality Images
Source: Multidim Syst Sign Process, vol. 29, no. 4, pp , 2018
Color Image Retrieval based on Primitives of Color Moments
Presentation transcript:

Fuzzy Color Histogram and Its Use in Color Image retrieval Author: Ju Han and Kai-Kuang Ma Source: IEEE Trans. Image Processing, Vol. 11, No. 8, pp. 944-952, 2002 Date: 2004/4/21 Adviser: Dr. Chin-Chen Chang Speaker: Hao-Yu Lo 2004/4/21

Outline Conclusions The conventional color histogram (CCH) The proposed method fuzzy color histogram(FCH) Experimental results (CCH)和(FCH)的目的都是做image retrieval。 Color histogram在這篇paper被視為顏色分佈的機率。 2004/4/21

Conclusions A new color histogram representation called fuzzy color histogram (FCH)was proposed. FCH is less sensitive than CCH on dealing with lighting intensity changes and region of interest image retrieval. 2004/4/21

conventional color histogram(CCH) H(I)=[h1, h2, …, hn], where hi=Ni /N (R,G,B) image I b r w y o g 用CCH表示一張圖,H(I)=[h1, h2, …, hn]。 N: total pixels in image I。n: color bins in color space。hi=Ni /N 2004/4/21

fuzzy color histogram(FCH) F(I)=[f1, f2, …, fc], where input pixels fuzzy c-mean(FCM) cluster algorithm fi pixels x1 x2 x3 x4………….. xN ij membership 0.2 0.9 0.6 0 ………….. 0.5 value of f1 Pj指的就是,從image I裡選出來的第j個pixel,(據理解,每個pixel被選到的機率都是1/16)。 ij指的是,第j個pixel在第i個bin的隸屬度。 membership 0.3 0.1 0.1 0.2 ………… 0.4 value of f2 . . . . . . 2004/4/21  1 1 1 1 1

Example of fuzzy c-mean(FCM) cluster algorithm(1/3) Initialize two cluster’s center v1=(166,169,189) v2=(120,123,124) t=1 X1=(186, 185, 197) X2=(162, 142, 165) X3=(206, 208, 209) X4=(142, 131, 160) f1 11=0.4 12 =0.7 1 3 =0.2 14 =0.6 f2 21 =0.6 22 =0.3 23 =0.8 24 =0.4 ij i j (1/||xj-vi||2)1/(m-1) , i=1,2; j=1,2,3,4 ( ) 1 1/2-1 11= ( ) ( ) 1 1/2-1 1 1/2-1 f1(1)=(0.4+0.7+0.2+0.6)/4, f2(1)=(0.6+0.3+0.8+0.4)/4 F(1)=(1.9/4, 2.1/4) 2004/4/21

Example of fuzzy c-mean(FCM) cluster algorithm(2/3) Compute new two cluster’s center v1(1)=(163,165,168) v2 (1) =(118,121,125) N ij j j N ij j t=2 X1=(186, 185, 197) X2=(162, 142, 165) X3=(206, 208, 209) X4=(142, 131, 160) f1 11=0.5 12 =0.67 1 3 =0.26 14 =0.55 f2 21 =0.5 22 =0.33 23 =0.74 24 =0.45 f1(2)=(0.5+0.67+0.26+0.55)/4, f2(2)=(0.5+0.33+0.74+0.45)/4 F(2)=(1.98/4, 2.02/4) 2004/4/21

Example of fuzzy c-mean(FCM) cluster algorithm(3/3) Iteration until ||F(t)-F(t-1)||<,stop. else, t=t+1 f1(5)=(0.5+0.67+0.26+0.56)/4=1.99/4, f2(5)=(0.5+0.33+0.74+0.44)/4=2.01/4 F(5)=(1.99/4, 2.01/4) f1(6)=(0.51+0.67+0.26+0.56)/4=2/4, f2(6)=(0.49+0.33+0.74+0.44)/4=2/4 F(6)=(2/4, 2/4) stop. v1(6)=(140,162,171), v2 (6)=(185,193,204) 2004/4/21

fuzzy c-mean(FCM) weighting exponent m, and error tolerance . Step1) Input the number of clusters c, the weighting exponent m, and error tolerance . Step2) Initialize the cluster centers V={vi}, for 1  i  c. Step3) Input data X={x1, x2, …,xN}. Step4) Calculate the c cluster centers V={vi (t)}. Step5) Update new F={f1, f2,…, fc,} Step6) If ||F(t)-F(t-1)||<,stop. else, t=t+1,return to step 4 有效計算 FCH的方法,是一個架構在fuzzy c-mean(FCM)的clustering演算法。介紹fuzzy c-mean在幹嘛。 2004/4/21

Experimental results(1/2) vary lighting intensity from –25, -20, ……,+20, +25 解釋rank的定義。 2004/4/21

Experimental results(2/2) retrieved images by using CCH retrieved images by using FCH 解釋為什麼要做regional retrieval。 2004/4/21 retrieved images by using CCH retrieved images by using FCH