Magnetic field influences on electrochemical processes

Slides:



Advertisements
Similar presentations
Introduction. The successful implementation of copper electroplating in the metallization of chip interconnect structures derives from the use the electrolyte.
Advertisements

GIANT MAGENTORESISCANCE AND MAGNETIC PROPERTIES OF ELECTRODEPOSITED Ni-Co-Cu/Cu MULTILAYERS.
Modeling in Electrochemical Engineering
Chapter 25 Electron transfer in heterogeneous systems (Processes at electrodes)
Evans Diagrams.
Chapter 4 Electrochemical kinetics at electrode / solution interface and electrochemical overpotential.
Budapest University of Technology and Economics Department of Electron Devices Microelectronics, BSc course Basic semiconductor physics.
QCM & EQCM - Principle & Application in Ion Transport State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese.
Introduction to Electroanalytical Chemistry
Fundamentals of Electrodics Fall semester, 2011 Shu-Yong Zhang.
ELECTROCHEMISTRY INTRO1 !? THINGS THAT WE ARE FAMILIAR WITH : !? Ohm’s law ( and Kirchoff’s…) (ABC... electrical circuits) U = I  R, R =   L / S Faraday’s.
Electro-Hydro-Dynamics Enhancement of Multi-phase Heat Transfer
1 Effect of Electric Field on the Self-propagating High-temperature Synthesis of Functionally Gradient Materials Meng Qingsen Quan wanglin Cheng dajun.
Studies on Capacity Fade of Spinel based Li-Ion Batteries by P. Ramadass, A. Durairajan, Bala S. Haran, R. E. White and B. N. Popov Center for Electrochemical.
Electroanalytical Chemistry
California Science Content Standards related to Nanoscience & Nanotechnology PhysicsChemistryBiology Investigation & Experimentation 1h1b 1c 1e 6a.
ADVANCED ELECTRODE MATERIALS FOR ELECTROCHEMICAL SUPERCAPACITORS
Magnetic Properties of Materials
PREPARATION OF ZnO NANOWIRES BY ELECTROCHEMICAL DEPOSITION
§7.11 Polarization of electrode
Electrical Conduction in Solids
MHD Department Institute of Safety Research 2 nd Sino-German Workshop on EPM (Dresden) Experimental studies of bubble-driven liquid metal flows in a static.
Polarization.
Convective Heat Transfer in Porous Media filled with Compressible Fluid subjected to Magnetic Field Watit Pakdee* and Bawonsak Yuwaganit Center R & D on.
Effect of HSMF on Electrodeposited Ni-Fe Membrane-- Crystal Morphology and Magnetism Performance Yunbo Zhong, Yanling Wen, Zhongming Ren, Kang Deng, Kuangdi.
Passivation of HPGe Detectors at LNL-INFN Speaker: Gianluigi Maggioni Materials & Detectors Laboratory (LNL-INFN) Scientific Manager: Prof. Gianantonio.
J.Vaitkus IWORID6, Glasgow,
S. A. Giamini. Graphene A hexagonal honeycomb lattice of carbon. In its basic form it is a one-atom thick (2D) sheet. Interesting properties: Better electric.
Shanghai Key Laboratory of Modern Metallurgy & Material Processing
Introduction to Electrochemistry A.) Introduction : 1.) Electroanalytical Chemistry: group of analytical methods based upon electrical properties of analytes.
Electric Currents Charges in motion.. Creating Potential Difference. Alessandro Volta ( ) –Ranked potentials created by combing two metal discs.
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Dipl. phys. Elke Schuster Institute for Applied.
Modeling of reactant concentration in electrocatalytic processes at conducting polymer modified electrodes Valdas Jasaitis, Albertas Malinauskas, Feliksas.
Methodology Electrodeposited Pt and Pt/Ni electrodes for dye sensitized solar cells with improved stability G. Syrrokostas, G. Leftheriotis* and P. Yianoulis.
Bulk Electrolysis: Electrogravimetry and Coulometry
Controlling the CO adsorption on Pt clusters by dopant induced electronic structure modification Piero Ferrari, [a] Luis M. Molina, [b] Vladimir E. Kaydashev,
Introduction to Electroanalytical Chemistry
DC Sputtering Disadvantage #1 Low secondary electron yield
Item: bioinorganic chemistry and fizkolloidnaya
Electrical Double Layer
Robert Vittoe1, Yici Jing2, Sejal Vagal3, and Mark Canner4
Chapter 3 Plasma as fluids
KS4 Chemistry Metallic Bonding.
Elmira Ghanbari, M. Iannuzzi, M. Rincon Ortiz & R.S.Lillard.
© 2011 Cengage Learning Engineering. All Rights Reserved.
UNIT - 4 HEAT TRANSFER.
KS4 Chemistry Metallic Bonding.
Ionic vs Molecular
Chapter 3 Notes: First-row d-block Elements
Chem. warm-up: What is the difference between an ionic and covalent compounds? Ionic compounds are made of ions (Cations & Anions) and transfer electrons,
EGEE 520 project presentation
Electron transfer in heterogeneous systems (on electrodes)
Influence of static magnetic fields in nickel electrodeposition
Influence of energetic ions on neoclassical tearing modes
The Free Electron Fermi Gas
He-Qun Dai1,2, Hao Xu1,2, Yong-Ning Zhou2, Fang Lu1, and Zheng-Wen Fu
Chapter 7: Properties of Ionic Covalent and Metal Materials
Electrode kinetics and mass transport
PY212 Electricity and Magnetism
Aim: What are the four types of solids?
A Deeper Insight into the Meaning of k° and α.
High-Energy Li Metal Battery with Lithiated Host
CHEMICAL BONDING Cocaine
LECTURE I: SINGLE-PARTICLE MOTIONS IN ELECTRIC AND MAGNETIC FIELDS
Electron transfer in heterogeneous systems (on electrodes)
Voltaic (Galvanic)Cells
Cyclic Voltammetry Dr. A. N. Paul Angelo Associate Professor,
Review: A voltaic cell is created consisting of a solid nickel electrode in contact with a solution of Ni2+ ions and a solid copper electrode in contact.
Biomedical Electronics & Bioinstrumentation
The atomic bonding in metals is metallic bonding.
Presentation transcript:

Magnetic field influences on electrochemical processes Silvio Köhler, Andreas Bund, Holger H. Kühnlein, Adriana Ispas, Waldfried Plieth SFB 609, C5 Magnetic Field Control of Metal Deposition TU Dresden Institut für Physikalische Chemie und Elektrochemie

TU Dresden Institut für Physikalische Chemie und Elektrochemie Motivation and Aim to find out How does a magnetic field influence the several parts of an electrochemical reaction? to describe explaining of phenomena and creation of an experimental basis for numerical simulations to tailor combinations of electric and magnetic fields for deposition of functionalized layers with defined properties and improving the mass transport in micro and nano structures, respectively TU Dresden Institut für Physikalische Chemie und Elektrochemie

Electrochemical Reactions Influence on electron transfer kinetics ? Influence on mass transport MHD effect  Gradient effects  Influence on surface diffusion/crystallization ? TU Dresden Institut für Physikalische Chemie und Elektrochemie

Copper dissolution in microstructures AE Va GE B VIa MHD-effect B  E Lorentz-Force FL + natural convection Fconv unstirred stirred Magnetic field on TU Dresden Institut für Physikalische Chemie und Elektrochemie

Copper dissolution in microstructures AE IIIa GE B IVa MHD-effect B  E Paramagnetic gradient Force Fgrad unstirred stirred TU Dresden Institut für Physikalische Chemie und Elektrochemie

Charge transfer reaction Butler- Volmer- Equation: (i: current density; i0: exchange current density; D : overvoltage ; z: number of electrons; : transfer coefficient; F: Faraday´s constant; R: universal gas constant; T: absolute temperature) TU Dresden Institut für Physikalische Chemie und Elektrochemie

Electrochemical Quartz Crystal Microbalance (EQCM) Counter electrode Reference Electrode Hg/ Hg2Cl2 Cell Quartz Potentiostat RE CE WE Network analyser Working N S Computer TU Dresden Institut für Physikalische Chemie und Elektrochemie

Experimental Technique (EQCM) in situ measurements of the mass changes at electrode surfaces during electrodeposition its functionality is based on the converse piezoelectric effect quartz gold electrodes film shear motion Layer 2 9,997 9,998 9,999 10,000 20 40 60 80 100 Quartz with Rigid Layer Unloaded Quartz Damping Layer Real Part of Admittance / mS f / MHZ f f R,Layer 1 R,0 w Layer 1 w f R,Layer 2 w Sauerbrey equation: Complex frequency shift Mass Damping CSB: Sauerbrey constant TU Dresden Institut für Physikalische Chemie und Elektrochemie

Galvanostatic deposition Deposition of Nickel Galvanostatic deposition 2 H+ + 2e-  H2 Ni2+ + 2e-  Ni Small Current Density (E1) iNi(B)iNi(B=0) iH2(B)>iH2(B=0)  Current efficiency decreases High Current Density (E2) iNi(B)>iNi(B=0)  Current efficiency not affected by B  B=0    B>0 TU Dresden Institut für Physikalische Chemie und Elektrochemie

Morphology and Roughness Atomic Force Microscopy B= 0 mT, i=-50 mA cm2 i(H2)=-12.9 mA cm-2 Small damping change B= 740 mT, i=-50 mA cm2 i(H2)=-7.8 mA cm-2 Large damping change Ra mean roughness Lx, Ly dimension of the surface f(x,y) relative surface to the central plane TU Dresden Institut für Physikalische Chemie und Elektrochemie

Deposition of Polypyrrole (PPy) orientation-effect at delocalized π-bonds doping with anions (A-) Electrical conductivity A- = perchlorate ClO4- A- = p-toluenesulfonate TsO- smooth layers rough layers MFD-effect at PPy|ClO4- orientation-effect at PPy|TsO- TU Dresden Institut für Physikalische Chemie und Elektrochemie

Cyclovoltammetry 10mV/s 5 cycles at B= 0T in monomer free solution Ion Exchange Cyclovoltammetry 10mV/s 5 cycles at B= 0T in monomer free solution Exchange of anions No visible differences in Exchange behavior. Exchange of cations Exchange suppressed in the case of magnetopolymerized Polypyrrole TU Dresden Institut für Physikalische Chemie und Elektrochemie

TU Dresden Institut für Physikalische Chemie und Elektrochemie Conclusions Influence on mass transport by Lorentz-Force (MHD-effect) and paramagnetic-gradient- Force No influence on charge transfer kinetic Magnetic field induces changes in surface roughness (nickel deposition) MHD- (Polypyrrole|Perchlorate-Anions) and orientation effect (Polypyrrole|p-toluenesulfonate-Anions) at conducting polymers TU Dresden Institut für Physikalische Chemie und Elektrochemie

TU Dresden Institut für Physikalische Chemie und Elektrochemie Outlook Investigation of mass transport in microstructures including diamagnetic ions (Zn2+, Ag+) model system for numerical simulations Deposition of alloys with different magnetic properties (NiFe) Investigation of the magnetic field influences on the conductivity and dopand exchange kinetic of conducting polymers (Polypyrrole in combination with several anions) TU Dresden Institut für Physikalische Chemie und Elektrochemie

Acknowledgements The authors are grateful to SFB 609 (Institution of German Research) for the financial support and Sino-German Scientific Center for the invitation to the workshop. Thank you for your attention! TU Dresden Institut für Physikalische Chemie und Elektrochemie