Alternative Folding Nuclei Definitions Facilitate the Evolution of a Symmetric Protein Fold from a Smaller Peptide Motif  Liam M. Longo, Jihun Lee, Connie A.

Slides:



Advertisements
Similar presentations
Javed A. Khan, Ben M. Dunn, Liang Tong  Structure 
Advertisements

Volume 18, Issue 2, Pages (February 2010)
Mark E. Zweifel, Daniel J. Leahy, Doug Barrick  Structure 
Ross Alexander Robinson, Xin Lu, Edith Yvonne Jones, Christian Siebold 
A Naturally Occurring Repeat Protein with High Internal Sequence Identity Defines a New Class of TPR-like Proteins  Jacob D. Marold, Jennifer M. Kavran,
Liam M. Longo, Ozan S. Kumru, C. Russell Middaugh, Michael Blaber 
A Fence-like Coat for the Nuclear Pore Membrane
Conformational Changes of the Flavivirus E Glycoprotein
Sebastian Meyer, Raimund Dutzler  Structure 
Volume 21, Issue 3, Pages (March 2013)
Marcel Zimmermann, Julian D. Hegemann, Xiulan Xie, Mohamed A. Marahiel 
Volume 13, Issue 12, Pages (December 2005)
The Structure of the Cytoplasmic Domain of the Chloride Channel ClC-Ka Reveals a Conserved Interaction Interface  Sandra Markovic, Raimund Dutzler  Structure 
Volume 25, Issue 11, Pages e2 (November 2017)
Volume 22, Issue 6, Pages (June 2014)
The 19S Cap Puzzle: A New Jigsaw Piece
Model Building and Refinement of a Natively Glycosylated HIV-1 Env Protein by High- Resolution Cryoelectron Microscopy  Jeong Hyun Lee, Natalia de Val,
Chaperone-Assisted Crystallography with DARPins
Volume 93, Issue 4, Pages (May 1998)
Complex Energy Landscape of a Giant Repeat Protein
Volume 23, Issue 7, Pages (July 2015)
Volume 21, Issue 10, Pages (October 2013)
Volume 18, Issue 2, Pages (February 2010)
Phage Pierces the Host Cell Membrane with the Iron-Loaded Spike
Volume 26, Issue 2, Pages e3 (February 2018)
RNA-DNA Triplex Formation by Long Noncoding RNAs
Structure and RNA Interactions of the N-Terminal RRM Domains of PTB
Volume 13, Issue 2, Pages (February 2005)
Changbong Hyeon, Ruxandra I. Dima, D. Thirumalai  Structure 
From Computer Simulations to Human Disease
Crystal Structures of Ral-GppNHp and Ral-GDP Reveal Two Binding Sites that Are Also Present in Ras and Rap  Nathan I. Nicely, Justin Kosak, Vesna de Serrano,
Solution and Crystal Structures of a Sugar Binding Site Mutant of Cyanovirin-N: No Evidence of Domain Swapping  Elena Matei, William Furey, Angela M.
Ross Alexander Robinson, Xin Lu, Edith Yvonne Jones, Christian Siebold 
Jason M. van Rooyen, Valerie R. Abratt, Hassan Belrhali, Trevor Sewell 
Volume 21, Issue 4, Pages (April 2013)
Stacy D Benson, Jaana K.H Bamford, Dennis H Bamford, Roger M Burnett 
Volume 14, Issue 9, Pages (September 2006)
A Conformational Switch in the CRIB-PDZ Module of Par-6
Nuclear Magnetic Resonance Structure of a Novel Globular Domain in RBM10 Containing OCRE, the Octamer Repeat Sequence Motif  Bryan T. Martin, Pedro Serrano,
Volume 23, Issue 11, Pages (November 2015)
Hongwei Wu, Mark W. Maciejewski, Sachiko Takebe, Stephen M. King 
Volume 17, Issue 6, Pages (June 2009)
Volume 24, Issue 9, Pages (September 2016)
Jason O. Moore, Wayne A. Hendrickson  Structure 
Naomi Courtemanche, Doug Barrick  Structure 
Hongyu Zhang, Sophie E. Jackson  Biophysical Journal 
Volume 13, Issue 2, Pages (February 2005)
Probing the “Dark Matter” of Protein Fold Space
Volume 26, Issue 1, Pages e4 (January 2018)
Jason O. Moore, Wayne A. Hendrickson  Structure 
The Unmasking of Telomerase
Untangling the Influence of a Protein Knot on Folding
Velocity-Dependent Mechanical Unfolding of Bacteriorhodopsin Is Governed by a Dynamic Interaction Network  Christian Kappel, Helmut Grubmüller  Biophysical.
Crystal Structures of the BAR-PH and PTB Domains of Human APPL1
Meigang Gu, Kanagalaghatta R. Rajashankar, Christopher D. Lima 
Volume 112, Issue 9, Pages (May 2017)
Multiple Folding Pathways of the SH3 Domain
Volume 34, Issue 3, Pages (May 2009)
Structure of the Staphylococcus aureus AgrA LytTR Domain Bound to DNA Reveals a Beta Fold with an Unusual Mode of Binding  David J. Sidote, Christopher.
Volume 14, Issue 6, Pages (June 2006)
Volume 21, Issue 10, Pages (October 2013)
Volume 22, Issue 6, Pages (June 2014)
Volume 87, Issue 7, Pages (December 1996)
Volume 26, Issue 7, Pages e3 (July 2018)
Structural Basis for Ligand Recognition and Activation of RAGE
Volume 7, Issue 6, Pages (June 2001)
Volume 17, Issue 5, Pages (May 2009)
Interplay between Protein Thermal Flexibility and Kinetic Stability
Qing Yao, Sara J. Weaver, Jee-Young Mock, Grant J. Jensen  Structure 
Volume 15, Issue 5, Pages (May 2007)
Presentation transcript:

Alternative Folding Nuclei Definitions Facilitate the Evolution of a Symmetric Protein Fold from a Smaller Peptide Motif  Liam M. Longo, Jihun Lee, Connie A. Tenorio, Michael Blaber  Structure  Volume 21, Issue 11, Pages 2042-2050 (November 2013) DOI: 10.1016/j.str.2013.09.003 Copyright © 2013 Elsevier Ltd Terms and Conditions

Structure 2013 21, 2042-2050DOI: (10.1016/j.str.2013.09.003) Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 1 An Evolutionary Mechanism for the Emergence of Symmetric Protein Folds The prevalence of symmetric protein folds in the proteome is generally held to be due to major replication errors involving gene duplication, fusion, and truncation. Although major replication errors are generally deleterious to protein fitness, purely symmetric protein sequences may confer folding robustness during protein structure evolution by virtue of repeated instances of a key folding nucleus that is effectively regenerated with gross structural rearrangement; thus, yielding a foldable polypeptide. The putative ancient β-trefoil symmetric oligomer structure is the Monofoil homo-trimer (Lee and Blaber, 2011; Lee et al., 2011). Structure 2013 21, 2042-2050DOI: (10.1016/j.str.2013.09.003) Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 2 Folding and Unfolding Kinetics “Chevron” Plot for Symfoil-4T and Permutant Proteins While permutation affects native state stability, and consequently the rate of unfolding, the folding rates for the set of all permutants are essentially identical to that of Symfoil-4T, indicating that an equivalent folding nucleus is utilized in each case. Structure 2013 21, 2042-2050DOI: (10.1016/j.str.2013.09.003) Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 3 Relaxed Stereo “Ribbon” Diagram of an Overlay of the Crystal Structures of Symfoil-4T and Permutant Proteins The locations of the N and C termini defining the Symfoil-4T protein (dark gray) and each permutant (P1, red; P2, blue; and P3, green) is indicated. The permutation, in each case, yields an undistorted β-trefoil fold. The structures shown in the right-hand side of Figure 1 are, in fact, Symfoil-4T and permutants #1, #2, and #3, and provide an independent and alternative “side view” orientation of each structure. Structure 2013 21, 2042-2050DOI: (10.1016/j.str.2013.09.003) Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 4 The Availability of Equivalent Alternative Folding Nuclei in a Purely Symmetric Protein Fold (A) Secondary structure of the β-trefoil fold colored to indicate an asymmetric 1° structure (the circled numbers indicate the location of all possible circular permutants occurring at reverse-turn regions). (B) A similar representation for symmetric 1° structure (as occurs with the Symfoil-4T protein). (C) Secondary structure of the FGF-1 β-trefoil fold shaded to indicate regions contributing to the folding nucleus (black) as determined from ϕ-value analysis (Longo et al., 2012). The circled numbers with black lettering indicate the location of all possible circular permutants occurring at reverse-turn regions, while the inverse lettering indicates specific β strand secondary structure elements. (D) Permutants 2–7 within the asymmetric FGF-1 1° structure disrupt the contiguous regions forming the folding transition state. In a symmetric 1° structure, an alternative definition exists for the folding transition state and it remains intact in all possible permutants. Structure 2013 21, 2042-2050DOI: (10.1016/j.str.2013.09.003) Copyright © 2013 Elsevier Ltd Terms and Conditions