Volume 103, Issue 8, Pages (October 2012)

Slides:



Advertisements
Similar presentations
Voltage-Dependent Hydration and Conduction Properties of the Hydrophobic Pore of the Mechanosensitive Channel of Small Conductance  Steven A. Spronk,
Advertisements

A Protein Dynamics Study of Photosystem II: The Effects of Protein Conformation on Reaction Center Function  Sergej Vasil’ev, Doug Bruce  Biophysical.
Membrane-Induced Structural Rearrangement and Identification of a Novel Membrane Anchor in Talin F2F3  Mark J. Arcario, Emad Tajkhorshid  Biophysical.
Volume 98, Issue 2, Pages (January 2010)
Pedro R. Magalhães, Miguel Machuqueiro, António M. Baptista 
Volume 107, Issue 10, Pages (November 2014)
Structure and Dynamics of the Membrane-Bound Form of Pf1 Coat Protein: Implications of Structural Rearrangement for Virus Assembly  Sang Ho Park, Francesca.
Volume 83, Issue 3, Pages (September 2002)
Sheila G. Couto, M. Cristina Nonato, Antonio J. Costa-Filho 
Volume 100, Issue 9, Pages (May 2011)
Richard J. Law, Keith Munson, George Sachs, Felice C. Lightstone 
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Shuichi Toraya, Katsuyuki Nishimura, Akira Naito  Biophysical Journal 
Volume 88, Issue 1, Pages (January 2005)
Tae-Joon Park, Ji-Sun Kim, Hee-Chul Ahn, Yongae Kim 
Monika Sharma, Alexander V. Predeus, Nicholas Kovacs, Michael Feig 
How Does a Voltage Sensor Interact with a Lipid Bilayer
Influence of Protein Scaffold on Side-Chain Transfer Free Energies
Sanguk Kim, Aaron K. Chamberlain, James U. Bowie  Biophysical Journal 
PH-Dependent Conformation, Dynamics, and Aromatic Interaction of the Gating Tryptophan Residue of the Influenza M2 Proton Channel from Solid-State NMR 
Heleen Meuzelaar, Jocelyne Vreede, Sander Woutersen 
Volume 99, Issue 8, Pages (October 2010)
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Volume 98, Issue 8, Pages (April 2010)
Volume 3, Issue 2, Pages (February 1995)
Modeling the Alzheimer Aβ17-42 Fibril Architecture: Tight Intermolecular Sheet-Sheet Association and Intramolecular Hydrated Cavities  Jie Zheng, Hyunbum.
Molecular-Dynamics Simulations of the ATP/apo State of a Multidrug ATP-Binding Cassette Transporter Provide a Structural and Mechanistic Basis for the.
“DFG-Flip” in the Insulin Receptor Kinase Is Facilitated by a Helical Intermediate State of the Activation Loop  Harish Vashisth, Luca Maragliano, Cameron F.
Volume 105, Issue 6, Pages (September 2013)
Volume 96, Issue 7, Pages (April 2009)
Hyunbum Jang, Buyong Ma, Thomas B. Woolf, Ruth Nussinov 
Calcium Enhances Binding of Aβ Monomer to DMPC Lipid Bilayer
Orsolya Toke, W. Lee Maloy, Sung Joon Kim, Jack Blazyk, Jacob Schaefer 
Comparative Molecular Dynamics Simulation Studies of Protegrin-1 Monomer and Dimer in Two Different Lipid Bilayers  Huan Rui, Jinhyuk Lee, Wonpil Im 
Side-Chain Conformational Thermodynamics of Aspartic Acid Residue in the Peptides and Achatin-I in Aqueous Solution  Tomohiro Kimura, Nobuyuki Matubayasi,
Volume 102, Issue 9, Pages (May 2012)
Sequential Unfolding of Individual Helices of Bacterioopsin Observed in Molecular Dynamics Simulations of Extraction from the Purple Membrane  Michele.
Marcos Sotomayor, Klaus Schulten  Biophysical Journal 
Volume 95, Issue 9, Pages (November 2008)
Sundeep S. Deol, Peter J. Bond, Carmen Domene, Mark S.P. Sansom 
Volume 106, Issue 10, Pages (May 2014)
Structure and Topology of the Huntingtin 1–17 Membrane Anchor by a Combined Solution and Solid-State NMR Approach  Matthias Michalek, Evgeniy S. Salnikov,
Volume 107, Issue 5, Pages (September 2014)
Molecular Interactions of Alzheimer's Biomarker FDDNP with Aβ Peptide
Volume 95, Issue 9, Pages (November 2008)
Grischa R. Meyer, Justin Gullingsrud, Klaus Schulten, Boris Martinac 
Cholesterol Modulates the Dimer Interface of the β2-Adrenergic Receptor via Cholesterol Occupancy Sites  Xavier Prasanna, Amitabha Chattopadhyay, Durba.
Chetan Poojari, Dequan Xiao, Victor S. Batista, Birgit Strodel 
Insight into Early-Stage Unfolding of GPI-Anchored Human Prion Protein
Volume 112, Issue 12, Pages (June 2017)
Volume 83, Issue 3, Pages (September 2002)
Molecular Mechanism for Stabilizing a Short Helical Peptide Studied by Generalized- Ensemble Simulations with Explicit Solvent  Yuji Sugita, Yuko Okamoto 
Volume 111, Issue 1, Pages (July 2016)
The Selectivity of K+ Ion Channels: Testing the Hypotheses
Volume 110, Issue 9, Pages (May 2016)
Molecular Dynamics Simulations of the Rotary Motor F0 under External Electric Fields across the Membrane  Yang-Shan Lin, Jung-Hsin Lin, Chien-Cheng Chang 
NMR Structures of the Second Transmembrane Domain of the Human Glycine Receptor α1 Subunit: Model of Pore Architecture and Channel Gating  Pei Tang, Pravat.
OmpT: Molecular Dynamics Simulations of an Outer Membrane Enzyme
Anisotropic Membrane Curvature Sensing by Amphipathic Peptides
Membrane Insertion of a Voltage Sensor Helix
Mechanism of Interaction between the General Anesthetic Halothane and a Model Ion Channel Protein, III: Molecular Dynamics Simulation Incorporating a.
Volume 88, Issue 6, Pages (June 2005)
Sebastian Fritsch, Ivaylo Ivanov, Hailong Wang, Xiaolin Cheng 
Chze Ling Wee, David Gavaghan, Mark S.P. Sansom  Biophysical Journal 
Atomic Detail Peptide-Membrane Interactions: Molecular Dynamics Simulation of Gramicidin S in a DMPC Bilayer  Dan Mihailescu, Jeremy C. Smith  Biophysical.
Y. Zenmei Ohkubo, Emad Tajkhorshid  Structure 
Hydrophobic Core Formation and Dehydration in Protein Folding Studied by Generalized-Ensemble Simulations  Takao Yoda, Yuji Sugita, Yuko Okamoto  Biophysical.
Volume 98, Issue 4, Pages (February 2010)
Volume 86, Issue 6, Pages (June 2004)
The NorM MATE Transporter from N
Presentation transcript:

Volume 103, Issue 8, Pages 1735-1743 (October 2012) Structure and Orientation of Bovine Lactoferrampin in the Mimetic Bacterial Membrane as Revealed by Solid-State NMR and Molecular Dynamics Simulation  Atsushi Tsutsumi, Namsrai Javkhlantugs, Atsushi Kira, Masako Umeyama, Izuru Kawamura, Katsuyuki Nishimura, Kazuyoshi Ueda, Akira Naito  Biophysical Journal  Volume 103, Issue 8, Pages 1735-1743 (October 2012) DOI: 10.1016/j.bpj.2012.09.010 Copyright © 2012 Biophysical Society Terms and Conditions

Figure 1 Plot of association constants (Ka) of LFampinB against DMPG weight percentage in the DMPG and DMPC mixed membranes. Biophysical Journal 2012 103, 1735-1743DOI: (10.1016/j.bpj.2012.09.010) Copyright © 2012 Biophysical Society Terms and Conditions

Figure 2 Temperature variation of 31P NMR spectra of LFampinB-bacterial membrane systems. (a) Acidic phospholipids bilayer with a weight percentage of 65% DMPG, 10% CL, and 25% DMPC. (b) Addition of LFampinB. Biophysical Journal 2012 103, 1735-1743DOI: (10.1016/j.bpj.2012.09.010) Copyright © 2012 Biophysical Society Terms and Conditions

Figure 3 13C NMR spectra of [1-13C] Ala7-LFampinB incorporated in the bacterial membrane. (a) DD-MAS (4 kHz) NMR spectrum of hydrated bacterial membrane. (b) DD-static NMR spectrum of hydrated bacterial membrane. (c) Side-band pattern of the CP-MAS (2 kHz) NMR spectrum of lyophilized powder sample (signals with asterisks indicate those of lipid molecules). Biophysical Journal 2012 103, 1735-1743DOI: (10.1016/j.bpj.2012.09.010) Copyright © 2012 Biophysical Society Terms and Conditions

Figure 4 (Color figure online.) Contour plots of RMSD against ζ and γL3 for N-terminal α-helix of LFampinB (a and b). (a) Chemical shift anisotropies of four amino-acid residues (Leu3, Leu4, Ala7, Gln8) are considered for the RMSD calculation. (b) Chemical shift anisotropies of six amino-acid residues (Leu3, Leu4, Ala7, Gln8, Phe11, Gly12) considered for the RMSD calculation. (c) Chemical shift oscillation curve for the N-terminal α-helix of LFampinB calculated by taking into account four amino-acid residues (Leu3, Leu4, Ala7, Gln8). Experimentally obtained values are also shown (solid circles). Biophysical Journal 2012 103, 1735-1743DOI: (10.1016/j.bpj.2012.09.010) Copyright © 2012 Biophysical Society Terms and Conditions

Figure 5 Schematic representation of membrane-bound structure for LFampinB by solid-state NMR. (a) Most probable alignment and structure bound to bacterial membrane. (b) Helix wheel and plane angle for carbonyl carbons. The X axis indicates the direction from bilayer normal to the helix axis. Carbonyl plane normal shows 93° from the Y axis. Biophysical Journal 2012 103, 1735-1743DOI: (10.1016/j.bpj.2012.09.010) Copyright © 2012 Biophysical Society Terms and Conditions

Figure 6 (Color figure online.) Snapshots of LFampinB in the DMPG membrane (a) before and (b) after 10-ns simulation. The hydrophilic side chains of Lys, Glu, Arg, and α-helix conformation of the peptide backbone are shown (blue, red, cyan, and orange, respectively). Lipid headgroups of phosphatidylglycerol parts, myristic acid chain parts, and water molecules are shown (green, gray, and red, respectively). For simplicity, the hydrophobic side chains of LFampinB, sodium, and chloride ions are not shown. Biophysical Journal 2012 103, 1735-1743DOI: (10.1016/j.bpj.2012.09.010) Copyright © 2012 Biophysical Society Terms and Conditions

Figure 7 Tilt-angle ζ of LFampinB (a) and distance between the center of mass of LFampinB helix and membrane center (b) as a function of simulation time. The tilt angle ζ was calculated between the principal axis of LFampinB helix and the Z′ axis, which is normal to the membrane. The principal axis of LFampinB helix was calculated using the backbone main-chain atoms that keep the α-helical structure from residues 2–10. Time dependence of the plane angle γ of carbonyl carbon atom of Leu3 from Y axis in helix wheel (c). The angle was calculated as a clockwise angle from the Y helix axis. Biophysical Journal 2012 103, 1735-1743DOI: (10.1016/j.bpj.2012.09.010) Copyright © 2012 Biophysical Society Terms and Conditions