Lecture 2 VHDL Refresher ECE 448 – FPGA and ASIC Design with VHDL.

Slides:



Advertisements
Similar presentations
1 Lecture 13 VHDL 3/16/09. 2 VHDL VHDL is a hardware description language. The behavior of a digital system can be described (specified) by writing a.
Advertisements

Introduction to VHDL (Lecture #5) ECE 331 – Digital System Design The slides included herein were taken from the materials accompanying Fundamentals of.
Introduction to VHDL CSCE 496/896: Embedded Systems Witawas Srisa-an.
Kazi Fall 2006 EEGN 4941 EEGN-494 HDL Design Principles for VLSI/FPGAs Khurram Kazi Some of the slides were taken from K Gaj’s lecture slides from GMU’s.
CSCI 660 EEGN-CSCI 660 Introduction to VLSI Design Lecture 2 Khurram Kazi Some of the slides were taken from K Gaj ’ s lecture slides from GMU ’ s VHDL.
ECE 331 – Digital System Design Course Introduction and VHDL Fundamentals (Lecture #1)
ECE 448 Lecture 3 Combinational-Circuit Building Blocks Data Flow Modeling of Combinational Logic ECE 448 – FPGA and ASIC Design with VHDL.
George Mason University ECE 448 – FPGA and ASIC Design with VHDL Combinational-Circuit Building Blocks Data Flow Modeling of Combinational Logic ECE 448.
VHDL. What is VHDL? VHDL: VHSIC Hardware Description Language  VHSIC: Very High Speed Integrated Circuit 7/2/ R.H.Khade.
Simple Testbenches Behavioral Modeling of Combinational Logic
EENG 2910 – Digital Systems Design Fall Course Introduction Class Time: M9:30am-12:20pm Location: B239, B236 and B227 Instructor: Yomi Adamo
Introduction to VHDL for Synthesis
ECE 332 Digital Electronics and Logic Design Lab Lab 5 VHDL Design Styles Testbenches.
Data Flow Modeling of Combinational Logic Simple Testbenches
1 Part I: VHDL CODING. 2 Design StructureData TypesOperators and AttributesConcurrent DesignSequential DesignSignals and VariablesState Machines A VHDL.
A VHDL Tutorial ENG2410. ENG241/VHDL Tutorial2 Goals Introduce the students to the following: –VHDL as Hardware description language. –How to describe.
Verilog Language Concepts
IAY 0600 Digital Systems Design
George Mason University ECE 448 – FPGA and ASIC Design with VHDL George Mason University ECE 448 Lab 1 Developing Effective Testbenches.
RTL Hardware Design by P. Chu Chapter Basic VHDL program 2. Lexical elements and program format 3. Objects 4. Data type and operators RTL Hardware.
CprE / ComS 583 Reconfigurable Computing Prof. Joseph Zambreno Department of Electrical and Computer Engineering Iowa State University Lecture #16 – Introduction.
Introduction to VHDL Spring EENG 2920 Digital Systems Design Introduction VHDL – VHSIC (Very high speed integrated circuit) Hardware Description.
Fall 2004EE 3563 Digital Systems Design EE 3563 VHSIC Hardware Description Language  Required Reading: –These Slides –VHDL Tutorial  Very High Speed.
George Mason University ECE 448 – FPGA and ASIC Design with VHDL VHDL Refresher Lecture 2.
HARDWARE DESCRIPTION LANGUAGE (HDL). What is HDL? A type of programming language for sampling and modeling of electronic & logic circuit designs It can.
Introduction to VHDL Simulation … Synthesis …. The digital design process… Initial specification Block diagram Final product Circuit equations Logic design.
Chapter 5 Introduction to VHDL. 2 Hardware Description Language A computer language used to design circuits with text-based descriptions of the circuits.
CEC 220 Digital Circuit Design Introduction to VHDL Wed, February 25 CEC 220 Digital Circuit Design Slide 1 of 19.
George Mason University Data Flow Modeling in VHDL ECE 545 Lecture 7.
04/26/20031 ECE 551: Digital System Design & Synthesis Lecture Set : Introduction to VHDL 12.2: VHDL versus Verilog (Separate File)
5-1 Logic System Design I VHDL Design Principles ECGR2181 Reading: Chapter 5.0, 5.1, 5.3 port ( I: in STD_LOGIC_VECTOR (1 to 9); EVEN, ODD: out STD_LOGIC.
VHDL Discussion Subprograms IAY 0600 Digital Systems Design Alexander Sudnitson Tallinn University of Technology 1.
Data Flow Modeling in VHDL
ECOM 4311—Digital System Design with VHDL
CDA 4253 FPGA System Design Introduction to VHDL
Lecture 2 VHDL Refresher ECE 448 – FPGA and ASIC Design with VHDL.
George Mason University Introduction to VHDL for Synthesis Lecture 3.
George Mason University ECE 448 – FPGA and ASIC Design with VHDL VHDL Refresher Lecture 2.
CEC 220 Digital Circuit Design Introduction to VHDL Wed, Oct 14 CEC 220 Digital Circuit Design Slide 1 of 19.
George Mason University Data Flow Modeling of Combinational Logic ECE 545 Lecture 5.
ECE 332 Digital Electronics and Logic Design Lab Lab 3 Introduction to Starter Kit ECE 332 George Mason University.
1 Introduction to Engineering Spring 2007 Lecture 18: Digital Tools 2.
IAY 0600 Digital Systems Design
CDA 4253 FPGA System Design Introduction to VHDL
Basic Language Concepts
Subject Name: FUNDAMENTALS OF HDL Subject Code: 10EC45
Design Entry: Schematic Capture and VHDL
ECE 448 Lecture 3 Combinational-Circuit Building Blocks Data Flow Modeling of Combinational Logic ECE 448 – FPGA and ASIC Design with VHDL.
Lecture 4 VHDL Basics Simple Testbenches.
ECE 448 Lecture 3 Combinational-Circuit Building Blocks Data Flow Modeling of Combinational Logic ECE 448 – FPGA and ASIC Design with VHDL.
Lecture 3 VHDL Basics Simple Testbenches.
ECE 448 Lecture 6 Modeling of Circuits with a Regular Structure Aliases, Constants, Packages Mixing Design Styles ECE 448 – FPGA and ASIC Design with.
ECE 448 Lecture 3 Combinational-Circuit Building Blocks Data Flow Modeling of Combinational Logic ECE 448 – FPGA and ASIC Design with VHDL.
Data Flow Modeling of Combinational Logic
VHDL Discussion Subprograms
IAS 0600 Digital Systems Design
ECE 448 Lecture 3 Combinational-Circuit Building Blocks Data Flow Modeling of Combinational Logic ECE 448 – FPGA and ASIC Design with VHDL.
VHDL Discussion Subprograms
Data Flow Description of Combinational-Circuit Building Blocks
IAS 0600 Digital Systems Design
Data Flow Description of Combinational-Circuit Building Blocks
ECE 448 Lecture 4 Modeling of Circuits with a Regular Structure Constants, Aliases, Packages ECE 448 – FPGA and ASIC Design with VHDL.
Modeling of Circuits with a Regular Structure
ECE 545 Lecture 5 Simple Testbenches.
Introduction to VHDL for Synthesis
CprE / ComS 583 Reconfigurable Computing
Sequntial-Circuit Building Blocks
EEL4712 Digital Design (VHDL Tutorial).
VHDL - Introduction.
Presentation transcript:

Lecture 2 VHDL Refresher ECE 448 – FPGA and ASIC Design with VHDL

Reading Required Recommended P. Chu, FPGA Prototyping by VHDL Examples Chapter 1, Gate-level combinational circuit Recommended S. Brown and Z. Vranesic, Fundamentals of Digital Logic with VHDL Design Chapter 2.10, Introduction to VHDL ECE 448 – FPGA and ASIC Design with VHDL

Recommended reading Wikipedia – The Free On-line Encyclopedia VHDL - http://en.wikipedia.org/wiki/VHDL Verilog - http://en.wikipedia.org/wiki/Verilog ECE 448 – FPGA and ASIC Design with VHDL

Recommended reading Required for Lab 1! P. Chu, FPGA Prototyping by VHDL Examples Chapter 3, RT-level combinational circuit S. Brown and Z. Vranesic, Fundamentals of Digital Logic with VHDL Design Chapter 6, Combinational-circuit building blocks ECE 448 – FPGA and ASIC Design with VHDL

Brief History of VHDL ECE 448 – FPGA and ASIC Design with VHDL

VHDL VHDL is a language for describing digital hardware used by industry worldwide VHDL is an acronym for VHSIC (Very High Speed Integrated Circuit) Hardware Description Language ECE 448 – FPGA and ASIC Design with VHDL 8

Genesis of VHDL State of art circa 1980 Multiple design entry methods and hardware description languages in use No or limited portability of designs between CAD tools from different vendors Objective: shortening the time from a design concept to implementation from 18 months to 6 months The Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL) is the product of a US Government request for a new means of describing digital hardware. The Very High Speed Integrated Circuit (VHSIC) Program was an initiative of the Defense Department to push the state of the art in VLSI technology, and VHDL was proposed as a versatile hardware description language. ECE 448 – FPGA and ASIC Design with VHDL 9

A Brief History of VHDL June 1981: Woods Hole Workshop July 1983: contract awarded to develop VHDL Intermetrics IBM Texas Instruments August 1985: VHDL Version 7.2 released December 1987: VHDL became IEEE Standard 1076-1987 and in 1988 an ANSI standard The contract for the first VHDL implementation was awarded to the team of Intermetrics, IBM, and Texas Instruments in July 1983. However, development of the language was not a closed process and was subjected to public review throughout the process (accounting for Versions 1 through 7.1). The final version of the language, developed under government contract, was released as VHDL Version 7.2. In March 1986, IEEE proposed a new standard VHDL to extend and modify the language to fix identified problems. In December 1987, VHDL became IEEE Standard 1076-1987. VHDL was again modified in September 1993 to further refine the language. These refinements both clarified and enhanced the language. The major changes included much improved file handling and a more consistent syntax and resulted in VHDL Standard 1076-1993. ECE 448 – FPGA and ASIC Design with VHDL 10

Four versions of VHDL Four versions of VHDL: IEEE-1076 1987 IEEE-1076 1993  most commonly supported by CAD tools IEEE-1076 2000 (minor changes) IEEE-1076 2002 (minor changes) ECE 448 – FPGA and ASIC Design with VHDL

Verilog ECE 448 – FPGA and ASIC Design with VHDL

Verilog Essentially identical in function to VHDL No generate statement Simpler and syntactically different C-like Gateway Design Automation Co., 1985 Gateway acquired by Cadence in 1990 IEEE Standard 1364-1995 Early de facto standard for ASIC programming Programming language interface to allow connection to non-Verilog code ECE 448 – FPGA and ASIC Design with VHDL

VHDL vs. Verilog Government Developed Commercially Developed Ada based C based Strongly Type Cast Mildly Type Cast Case-insensitive Case-sensitive Difficult to learn Easier to Learn More Powerful Less Powerful ECE 448 – FPGA and ASIC Design with VHDL

How to learn Verilog by yourself ?

How to learn Verilog by yourself ? ECE 448 – FPGA and ASIC Design with VHDL

Features of VHDL and Verilog Technology/vendor independent Portable Reusable ECE 448 – FPGA and ASIC Design with VHDL

VHDL Fundamentals ECE 448 – FPGA and ASIC Design with VHDL

Naming and Labeling (1) VHDL is case insensitive Example: Names or labels databus Databus DataBus DATABUS are all equivalent ECE 448 – FPGA and ASIC Design with VHDL

Naming and Labeling (2) General rules of thumb (according to VHDL-87) All names should start with an alphabet character (a-z or A-Z) Use only alphabet characters (a-z or A-Z) digits (0-9) and underscore (_) Do not use any punctuation or reserved characters within a name (!, ?, ., &, +, -, etc.) Do not use two or more consecutive underscore characters (__) within a name (e.g., Sel__A is invalid) All names and labels in a given entity and architecture must be unique ECE 448 – FPGA and ASIC Design with VHDL

Valid or invalid? 7segment_display A87372477424 Adder/Subtractor /reset And_or_gate AND__OR__NOT Kogge-Stone-Adder Ripple&Carry_Adder My adder ECE 448 – FPGA and ASIC Design with VHDL

Free Format VHDL is a “free format” language No formatting conventions, such as spacing or indentation imposed by VHDL compilers. Space and carriage return treated the same way. Example: if (a=b) then or if (a=b) then if (a = b) then are all equivalent ECE 448 – FPGA and ASIC Design with VHDL

Readability standards & coding style Adopt readability standards based on one of the the two main textbooks: Chu or Brown/Vranesic Use coding style recommended in OpenCores Coding Guidelines linked from the course web page Strictly enforced by the lab instructors and myself. Penalty points may be enforced for not following these recommendations!!! ECE 448 – FPGA and ASIC Design with VHDL

Comments Comments in VHDL are indicated with a “double dash”, i.e., “--” Comment indicator can be placed anywhere in the line Any text that follows in the same line is treated as a comment Carriage return terminates a comment No method for commenting a block extending over a couple of lines Examples: -- main subcircuit Data_in <= Data_bus; -- reading data from the input FIFO ECE 448 – FPGA and ASIC Design with VHDL

Comments Explain Function of Module to Other Designers Explanatory, Not Just Restatement of Code Locate Close to Code Described Put near executable code, not just in a header ECE 448 – FPGA and ASIC Design with VHDL

Design Entity ECE 448 – FPGA and ASIC Design with VHDL

Example: NAND Gate a b z 1 a z b 1 a z b ECE 448 – FPGA and ASIC Design with VHDL

Example VHDL Code 3 sections to a piece of VHDL code File extension for a VHDL file is .vhd Name of the file should be the same as the entity name (nand_gate.vhd) [OpenCores Coding Guidelines] LIBRARY ieee; USE ieee.std_logic_1164.all; ENTITY nand_gate IS PORT( a : IN STD_LOGIC; b : IN STD_LOGIC; z : OUT STD_LOGIC); END nand_gate; ARCHITECTURE model OF nand_gate IS BEGIN z <= a NAND b; END model; LIBRARY DECLARATION ENTITY DECLARATION ARCHITECTURE BODY ECE 448 – FPGA and ASIC Design with VHDL

Design Entity Design Entity - most basic building block of a design. entity declaration architecture 1 architecture 2 architecture 3 design entity Design Entity - most basic building block of a design. One entity can have many different architectures. ECE 448 – FPGA and ASIC Design with VHDL

Entity Declaration Entity Declaration describes the interface of the component, i.e. input and output ports. Entity name Port type Port names Semicolon ENTITY nand_gate IS PORT( a : IN STD_LOGIC; b : IN STD_LOGIC; z : OUT STD_LOGIC ); END nand_gate; No Semicolon after last port Reserved words Port modes (data flow directions) ECE 448 – FPGA and ASIC Design with VHDL

Entity declaration – simplified syntax ENTITY entity_name IS PORT ( port_name : port_mode signal_type; …………. port_name : port_mode signal_type); END entity_name; ECE 448 – FPGA and ASIC Design with VHDL

Port Mode IN a Port signal Entity Driver resides outside the entity ECE 448 – FPGA and ASIC Design with VHDL

Port Mode OUT c <= z z c Entity Port signal z Output cannot be read within the entity c Driver resides inside the entity c <= z ECE 448 – FPGA and ASIC Design with VHDL

Port Mode OUT (with extra signal) Entity Port signal x z c Signal x can be read inside the entity Driver resides inside the entity z <= x c <= x ECE 448 – FPGA and ASIC Design with VHDL

Port Mode BUFFER z c c <= z Entity Port signal z c Port signal Z can be read inside the entity Driver resides inside the entity c <= z Not recommended by OpenCores Coding Guidelines. Port of mode buffer can not be connected to other types of ports so buffer mode will propagate throughout the entire hierarchical design. Problems reported with synthesis of designs using these ports. ECE 448 – FPGA and ASIC Design with VHDL

Port Mode INOUT a Entity Port signal Signal can be read inside the entity Driver may reside both inside and outside of the entity ECE 448 – FPGA and ASIC Design with VHDL

Port Modes - Summary The Port Mode of the interface describes the direction in which data travels with respect to the component In: Data comes into this port and can only be read within the entity. It can appear only on the right side of a signal or variable assignment. Out: The value of an output port can only be updated within the entity. It cannot be read. It can only appear on the left side of a signal assignment. Inout: The value of a bi-directional port can be read and updated within the entity model. It can appear on both sides of a signal assignment. Buffer: Used for a signal that is an output from an entity. The value of the signal can be used inside the entity, which means that in an assignment statement the signal can appear on the left and right sides of the <= operator. Not recommended to be used in the synthesizable code. ECE 448 – FPGA and ASIC Design with VHDL

Architecture (Architecture body) Describes an implementation of a design entity Architecture example: ARCHITECTURE model OF nand_gate IS BEGIN z <= a NAND b; END model; ECE 448 – FPGA and ASIC Design with VHDL

Architecture – simplified syntax ARCHITECTURE architecture_name OF entity_name IS [ declarations ] BEGIN code END architecture_name; ECE 448 – FPGA and ASIC Design with VHDL

Entity Declaration & Architecture nand_gate.vhd LIBRARY ieee; USE ieee.std_logic_1164.all; ENTITY nand_gate IS PORT( a : IN STD_LOGIC; b : IN STD_LOGIC; z : OUT STD_LOGIC); END nand_gate; ARCHITECTURE dataflow OF nand_gate IS BEGIN z <= a NAND b; END dataflow; ECE 448 – FPGA and ASIC Design with VHDL

Tips & Hints Place each entity in a different file. The name of each file should be exactly the same as the name of an entity it contains. These rules are not enforced by all tools but are worth following in order to increase readability and portability of your designs ECE 448 – FPGA and ASIC Design with VHDL

Tips & Hints Place the declaration of each port, signal, constant, and variable in a separate line These rules are not enforced by all tools but are worth following in order to increase readability and portability of your designs ECE 448 – FPGA and ASIC Design with VHDL

Libraries ECE 448 – FPGA and ASIC Design with VHDL

Library Declarations Library declaration LIBRARY ieee; USE ieee.std_logic_1164.all; ENTITY nand_gate IS PORT( a : IN STD_LOGIC; b : IN STD_LOGIC; z : OUT STD_LOGIC); END nand_gate; ARCHITECTURE model OF nand_gate IS BEGIN z <= a NAND b; END model; Library declaration Use all definitions from the package std_logic_1164 ECE 448 – FPGA and ASIC Design with VHDL

Library declarations - syntax LIBRARY library_name; USE library_name.package_name.package_parts; ECE 448 – FPGA and ASIC Design with VHDL

Fundamental parts of a library PACKAGE 1 PACKAGE 2 TYPES CONSTANTS FUNCTIONS PROCEDURES COMPONENTS TYPES CONSTANTS FUNCTIONS PROCEDURES COMPONENTS ECE 448 – FPGA and ASIC Design with VHDL

Libraries ieee std work Need to be explicitly declared Specifies multi-level logic system, including STD_LOGIC, and STD_LOGIC_VECTOR data types Specifies pre-defined data types (BIT, BOOLEAN, INTEGER, REAL, SIGNED, UNSIGNED, etc.), arithmetic operations, basic type conversion functions, basic text i/o functions, etc. Visible by default Holds current designs after compilation ECE 448 – FPGA and ASIC Design with VHDL

STD_LOGIC Demystified ECE 448 – FPGA and ASIC Design with VHDL

What is STD_LOGIC you ask? LIBRARY ieee; USE ieee.std_logic_1164.all; ENTITY nand_gate IS PORT( a : IN STD_LOGIC; b : IN STD_LOGIC; z : OUT STD_LOGIC); END nand_gate; ARCHITECTURE dataflow OF nand_gate IS BEGIN z <= a NAND b; END dataflow; What is STD_LOGIC you ask? ECE 448 – FPGA and ASIC Design with VHDL

BIT versus STD_LOGIC BIT type can only have a value of ‘0’ or ‘1’ STD_LOGIC can have eight values ‘0’,’1’,’X’,’Z’,’W’,’L’,’H’,’-’ Useful mainly for simulation ‘0’,’1’, and ‘Z’ are synthesizable (your codes should contain only these three values) ECE 448 – FPGA and ASIC Design with VHDL

STD_LOGIC type demystified Value Meaning ‘X’ Forcing (Strong driven) Unknown ‘0’ Forcing (Strong driven) 0 ‘1’ Forcing (Strong driven) 1 ‘Z’ High Impedance ‘W’ Weak (Weakly driven) Unknown ‘L’ Weak (Weakly driven) 0. Models a pull down. ‘H’ Weak (Weakly driven) 1. Models a pull up. ‘-’ Don't Care Signals are used to connect different parts of a design. They can be thought of as “wire” in conventional sense. Every signal has a type. A type is all the valid values that a signal can assume. VHDL naturally supports bit type, which allows signals of this (bit) type to take the values ‘0’ or ‘1’. Signals of type integer can take integer values between +(231 – 1) to -(231-1). Wire in real implementation may need to take an unknown value, ‘X’ or high impedance value, ‘Z’. Thus, IEEE 1164 standard defined std_logic with nine values listed in Table 1. Std_logic_vector is an array or vector of std_logic type. It represents a bus and has dimension associated with it, which is known as the range of vector. ECE 448 – FPGA and ASIC Design with VHDL

More on STD_LOGIC Meanings (1) ‘1’ ‘X’ Contention on the bus X ‘0’ ECE 448 – FPGA and ASIC Design with VHDL

More on STD_LOGIC Meanings (2) ECE 448 – FPGA and ASIC Design with VHDL

More on STD_LOGIC Meanings (3) VDD VDD ‘H’ ‘0’ ‘1’ ‘L’ ECE 448 – FPGA and ASIC Design with VHDL

More on STD_LOGIC Meanings (4) Do not care. Can be assigned to outputs for the case of invalid inputs(may produce significant improvement in resource utilization after synthesis). Must be used with great caution. For example in VHDL, the comparison ‘1’ = ‘-’ gives FALSE. ‘-’ ECE 448 – FPGA and ASIC Design with VHDL

Resolving logic levels X 0 1 Z W L H - X X X X X X X X X 0 X 0 X 0 0 0 0 X 1 X X 1 1 1 1 1 X Z X 0 1 Z W L H X W X 0 1 W W W W X L X 0 1 L W L W X H X 0 1 H W W H X - X X X X X X X X ECE 448 – FPGA and ASIC Design with VHDL

STD_LOGIC Rules In ECE 448, use std_logic or std_logic_vector for all entity input or output ports Do not use integer, unsigned, signed, bit for ports You can use them inside of architectures if desired You can use them in generics Instead use std_logic_vector and a conversion function inside of your architecture [Consistent with OpenCores Coding Guidelines] ECE 448 – FPGA and ASIC Design with VHDL

Modeling Wires and Buses ECE 448 – FPGA and ASIC Design with VHDL

Signals a b SIGNAL a : STD_LOGIC; SIGNAL b : STD_LOGIC_VECTOR(7 DOWNTO 0); a 1 wire b bus 8 ECE 448 – FPGA and ASIC Design with VHDL

Standard Logic Vectors SIGNAL a: STD_LOGIC; SIGNAL b: STD_LOGIC_VECTOR(3 DOWNTO 0); SIGNAL c: STD_LOGIC_VECTOR(3 DOWNTO 0); SIGNAL d: STD_LOGIC_VECTOR(15 DOWNTO 0); SIGNAL e: STD_LOGIC_VECTOR(8 DOWNTO 0); ………. a <= ‘1’; b <= ”0000”; -- Binary base assumed by default c <= B”0000”; -- Binary base explicitly specified d <= X”AF67”; -- Hexadecimal base e <= O”723”; -- Octal base ECE 448 – FPGA and ASIC Design with VHDL

Vectors and Concatenation SIGNAL a: STD_LOGIC_VECTOR(3 DOWNTO 0); SIGNAL b: STD_LOGIC_VECTOR(3 DOWNTO 0); SIGNAL c, d, e: STD_LOGIC_VECTOR(7 DOWNTO 0); a <= ”0000”; b <= ”1111”; c <= a & b; -- c = ”00001111” d <= ‘0’ & ”0001111”; -- d <= ”00001111” e <= ‘0’ & ‘0’ & ‘0’ & ‘0’ & ‘1’ & ‘1’ & ‘1’ & ‘1’; -- e <= ”00001111” ECE 448 – FPGA and ASIC Design with VHDL

Fixed Rotation in VHDL A<<<1 ArotL <= SIGNAL A : STD_LOGIC_VECTOR(3 DOWNTO 0); SIGNAL ArotL: STD_LOGIC_VECTOR(3 DOWNTO 0); A(3) A(2) A(1) A(0) A<<<1 Internal signals are from DUT. Main process may be split into main process. I.e. one to drive clk, rst and other for test vectors. Many architectures can be tested by inserting more for DUT:TestComp use entity work.TestComp(archName) statmetns “work” is the name of the library that “TestComp” is being compiled to. The “DUT” tag is required. A(2) A(1) A(0) A(3) ArotL <= ECE 448 – FPGA and ASIC Design with VHDL

Fixed Shift in VHDL A>>1 AshiftR <= SIGNAL A : STD_LOGIC_VECTOR(3 DOWNTO 0); SIGNAL AshiftR: STD_LOGIC_VECTOR(3 DOWNTO 0); A(3) A(2) A(1) A(0) A>>1 Internal signals are from DUT. Main process may be split into main process. I.e. one to drive clk, rst and other for test vectors. Many architectures can be tested by inserting more for DUT:TestComp use entity work.TestComp(archName) statmetns “work” is the name of the library that “TestComp” is being compiled to. The “DUT” tag is required. ‘0’ A(3) A(2) A(1) AshiftR <= ECE 448 – FPGA and ASIC Design with VHDL

VHDL Design Styles ECE 448 – FPGA and ASIC Design with VHDL

VHDL Design Styles VHDL Design Styles behavioral dataflow structural Testbenches dataflow behavioral (sequential) structural Concurrent statements Components and interconnects Sequential statements Registers State machines Decoders Subset most suitable for synthesis ECE 448 – FPGA and ASIC Design with VHDL

xor3 Example ECE 448 – FPGA and ASIC Design with VHDL

Entity xor3_gate LIBRARY ieee; USE ieee.std_logic_1164.all; ENTITY xor3_gate IS PORT( A : IN STD_LOGIC; B : IN STD_LOGIC; C : IN STD_LOGIC; Result : OUT STD_LOGIC ); end xor3_gate; ECE 448 – FPGA and ASIC Design with VHDL

Dataflow Architecture (xor3_gate) ARCHITECTURE dataflow OF xor3_gate IS SIGNAL U1_OUT: STD_LOGIC; BEGIN U1_OUT <= A XOR B; Result <= U1_OUT XOR C; END dataflow; U1_OUT ECE 448 – FPGA and ASIC Design with VHDL

Dataflow Description Describes how data moves through the system and the various processing steps. Dataflow uses series of concurrent statements to realize logic. Dataflow is most useful style when series of Boolean equations can represent a logic  used to implement simple combinational logic Dataflow code also called “concurrent” code Concurrent statements are evaluated at the same time; thus, the order of these statements doesn’t matter This is not true for sequential/behavioral statements This order… U1_out <= A XOR B; Result <= U1_out XOR C; Is the same as this order… ECE 448 – FPGA and ASIC Design with VHDL

Structural Architecture in VHDL 87 ARCHITECTURE structural OF xor3_gate IS SIGNAL U1_OUT: STD_LOGIC; COMPONENT xor2 PORT( I1 : IN STD_LOGIC; I2 : IN STD_LOGIC; Y : OUT STD_LOGIC ); END COMPONENT; BEGIN U1: xor2 PORT MAP (I1 => A, I2 => B, Y => U1_OUT); U2: xor2 PORT MAP (I1 => U1_OUT, I2 => C, Y => Result); END structural; A B C Result xor3_gate U1_OUT I1 I2 Y I1 I2 Y PORT NAME LOCAL WIRE NAME ECE 448 – FPGA and ASIC Design with VHDL

xor2 xor2.vhd LIBRARY ieee; USE ieee.std_logic_1164.all; ENTITY xor2 IS PORT( I1 : IN STD_LOGIC; I2 : IN STD_LOGIC; Y : OUT STD_LOGIC); END xor2; ARCHITECTURE dataflow OF xor2 IS BEGIN Y <= I1 xor I2; END dataflow; ECE 448 – FPGA and ASIC Design with VHDL

Structural Architecture in VHDL 93 ARCHITECTURE structural OF xor3_gate IS SIGNAL U1_OUT: STD_LOGIC; BEGIN U1: entity work.xor2(dataflow) PORT MAP (I1 => A, I2 => B, Y => U1_OUT); U2: entity work.xor2(dataflow) PORT MAP (I1 => U1_OUT, I2 => C, Y => Result); END structural; A B C Result xor3_gate U1_OUT I1 I2 Y I1 I2 Y PORT NAME LOCAL WIRE NAME ECE 448 – FPGA and ASIC Design with VHDL

Structural Description Structural design is the simplest to understand. This style is the closest to schematic capture and utilizes simple building blocks to compose logic functions. Components are interconnected in a hierarchical manner. Structural descriptions may connect simple gates or complex, abstract components. Structural style is useful when expressing a design that is naturally composed of sub-blocks. ECE 448 – FPGA and ASIC Design with VHDL

Behavioral Architecture (xor3 gate) ARCHITECTURE behavioral OF xor3 IS BEGIN xor3_behave: PROCESS (A, B, C) IF ((A XOR B XOR C) = '1') THEN Result <= '1'; ELSE Result <= '0'; END IF; END PROCESS xor3_behave; END behavioral; ECE 448 – FPGA and ASIC Design with VHDL

Behavioral Description It accurately models what happens on the inputs and outputs of the black box (no matter what is inside and how it works). This style uses PROCESS statements in VHDL. ECE 448 – FPGA and ASIC Design with VHDL

? ECE 448 – FPGA and ASIC Design with VHDL