Warm Up: Factor each expression    .

Slides:



Advertisements
Similar presentations
Solving Quadratic Equations
Advertisements

Solving Quadratic Equations by Using Square Roots 9-7
The Quadratic Formula 9-9 and the Discriminant Warm Up
The Quadratic Formula 8-9 and the Discriminant Warm Up
CONFIDENTIAL 1 Grade 8 Algebra1 Solving Quadratic Equations by Factoring.
Non linear system. Warm Up Solve each quadratic equation by factoring. Check your answer. 5, x 2 - 3x - 10 = x x = Find the number.
8-10 Nonlinear Systems Warm Up Lesson Presentation Lesson Quiz
Warm Up #8 Find the product 2. (5m + 6)(5m – 6) 1. (4y – 3)(3y + 8)
5-3 Solving Quadratic Equations by Graphing and Factoring Warm Up
Objectives Solve quadratic equations by graphing or factoring.
9-9 The Discriminant Warm Up Warm Up Lesson Presentation Lesson Presentation California Standards California StandardsPreview.
Perfect Squares Lesson 8-9 Splash Screen.
Solve x x + 49 = 64 by using the Square Root Property.
Lesson 3 Contents Example 1Radical Equation with a Variable Example 2Radical Equation with an Expression Example 3Variable on Each Side.
Holt Algebra The Quadratic Formula and the Discriminant Warm Up (Add to HW & Pass Back Papers) Evaluate for x =–2, y = 3, and z = – x 2 2.
Systems of Equations 7-4 Learn to solve systems of equations.
Solving Quadratic Equations by Factoring 8-6
Over Lesson 8–5 A.A B.B C.C D.D 5-Minute Check 1 (x + 11)(x – 11) Factor x 2 – 121.
Warm Up The woodland jumping mouse can hop surprisingly long distances given its small size. A relatively long hop can be modeled by y = -2/9x(x-6) where.
Example 1A Solve the equation. Check your answer. (x – 7)(x + 2) = 0
Solving Quadratic Equations by Factoring 8-6
9-5 Solving Quadratic Equations by Factoring Warm Up Warm Up Lesson Presentation Lesson Presentation California Standards California StandardsPreview.
Example 1 Solving Two-Step Equations SOLUTION a. 12x2x + 5 = Write original equation. 112x2x + – = 15 – Subtract 1 from each side. (Subtraction property.
Holt Algebra Solving Quadratic Equations by Factoring Warm Up Find each product. 1. (x + 2)(x + 7)2. (x – 11)(x + 5) 3. (x – 10) 2 Factor each polynomial.
Objective Solve quadratic equations by factoring..
2.1 – Linear and Quadratic Equations Linear Equations.
Warm Up Find each product. 1. (x + 2)(x + 7) 2. (x – 11)(x + 5)
Chapter 9 - Quadratic Functions and Equations
Chapter 9 - Quadratic Functions and Equations
Holt McDougal Algebra The Quadratic Formula and the Discriminant 8-9 The Quadratic Formula and the Discriminant Holt Algebra 1 Warm Up Warm Up Lesson.
Splash Screen Unit 8 Quadratic Expressions and Equations EQ: How do you use addition, subtraction, multiplication, and factoring of polynomials in order.
Factoring to Solve Quadratic Equations – Solving Quadratic Equations by Factoring A quadratic equation is written in the Standard Form, where a,
5.3 and 5.4 Solving a Quadratic Equation. 5.3 Warm Up Find the x-intercept of each function. 1. f(x) = –3x f(x) = 6x + 4 Factor each expression.
LESSON 8–7 Solving ax2 + bx + c = 0.
Factoring, Solving Quadratic Equtions with a  1 (8-4)
Warm Up Lesson Presentation Lesson Quiz
Identifying Quadratic Functions
5-3 Solving Quadratic Equations by Graphing and Factoring Warm Up
Solving the Quadratic Equation by Completing the Square
Objectives Solve quadratic equations by factoring.
Solve 25x3 – 9x = 0 by factoring.
Solving Quadratic Equations by Factoring 8-6
Warm Up Find each square root. Solve the equation. 3. 2x – 40 = 0 1.
Splash Screen.
Using the Quadratic Formula
A quadratic equation is written in the Standard Form,
The Quadratic Formula 8-9 and the Discriminant Warm Up
Chapter 6.4 Completing the Square Standard & Honors
Solving Quadratic Equations by Factoring 8-6
Splash Screen.
Warm Up: Solve by factoring      .
Warm Up Evaluate for x =–2, y = 3, and z = –1. 1. x2 2. xyz 3. x2 – yz
Solve Equations in Factored Form
Objective Solve quadratic equations by factoring..
Warm Up Find the x-intercept of each function. 1. f(x) = –3x + 9 3
Solving Quadratic Equations by Factoring 9-6
Solving Quadratic Equations by Factoring 9-6
You can find the roots of some quadratic equations by factoring and applying the Zero Product Property. Functions have zeros or x-intercepts. Equations.
8-8 Completing the Square Warm Up Lesson Presentation Lesson Quiz
Real World Problem Solving Quadratic Equations 8
Solve. 2x – 7 = 3x c + 9 = c + 1 3m – 12 = m Warm up Solve. 2x – 7 = 3x c + 9 = c + 1 3m – 12 = m.
8-10 Nonlinear Systems Warm Up Lesson Presentation Lesson Quiz
Solving Quadratic Equations by Factoring 8-6
Solving Quadratic Equations by Factoring 9-6
 .
Solve. 2x – 7 = 3x c + 9 = c + 1 3m – 12 = m Warm up Solve. 2x – 7 = 3x c + 9 = c + 1 3m – 12 = m.
The Discriminant Lesson 9.9.
Presentation transcript:

Warm Up: Factor each expression    

Zero Product Property: If the product of two quantities equals zero, at least one of the quantities equals 0.

Example 1: Use the Zero Product Property Use the Zero Product Property to solve the equation. Check your answer. (x – 7)(x + 2) = 0 Use the Zero Product Property. x – 7 = 0 or x + 2 = 0 Solve each equation. x = 7 or x = –2 The solutions are 7 and –2.

  Example 2: Use the Zero Product Property Use the Zero Product Property to solve each equation. Check your answer. x(x – 2) = 0 (x)(x – 2) = 0 Use the Zero Product Property. x = 0 or x – 2 = 0 Solve the second equation. x = 2 The solutions are 0 and 2. (x – 2)(x) = 0 (2 – 2)(2) 0 (0)(2) 0 0 0  Check (x – 2)(x) = 0 (0 – 2)(0) 0 (–2)(0) 0 0 0  Substitute each solution for x into the original equation.

Check It Out! Example 1b Use the Zero Product Property to solve the equation. Check your answer. (3x + 5)(x – 3) = 0 Use the Zero Product Property. 3x + 5 = 0 or x – 3 = 0   Solve each equation.  

Steps to solve quadratics: Factor the quadratic. Set each part equal to 0. Solve each part.

Example 3: Solving Quadratic Equations by Factoring Solve the quadratic equation by factoring. Check your answer. x2 – 6x + 8 = 0 (x – 4)(x – 2) = 0 Factor the trinomial. x – 4 = 0 or x – 2 = 0 Use the Zero Product Property. x = 4 or x = 2 The solutions are 4 and 2. Solve each equation. x2 – 6x + 8 = 0 (4)2 – 6(4) + 8 0 16 – 24 + 8 0 0 0  Check x2 – 6x + 8 = 0 (2)2 – 6(2) + 8 0 4 – 12 + 8 0 0 0  Check

Example 4: Solving Quadratic Equations by Factoring Solve the quadratic equation by factoring. Check your answer. x2 + 4x = 21 The equation must be written in standard form. So subtract 21 from both sides. x2 + 4x = 21 –21 –21 x2 + 4x – 21 = 0 (x + 7)(x –3) = 0 Factor the trinomial. x + 7 = 0 or x – 3 = 0 Use the Zero Product Property. x = –7 or x = 3 The solutions are –7 and 3. Solve each equation.

Example 5: Solving Quadratic Equations by Factoring Solve the quadratic equation by factoring. Check your answer. x2 – 12x + 36 = 0 (x – 6)(x – 6) = 0 Factor the trinomial. x – 6 = 0 or x – 6 = 0 Use the Zero Product Property. x = 6 or x = 6 Solve each equation. Both factors result in the same solution, so there is one solution, 6.

Example 6: Solving Quadratic Equations by Factoring Solve the quadratic equation by factoring. Check your answer. –2x2 = 20x + 50 +2x2 +2x2 0 = 2x2 + 20x + 50 –2x2 = 20x + 50 The equation must be written in standard form. So add 2x2 to both sides. 2x2 + 20x + 50 = 0 Factor out the GCF 2. 2(x2 + 10x + 25) = 0 Factor the trinomial. 2(x + 5)(x + 5) = 0 2 ≠ 0 or x + 5 = 0 Use the Zero Product Property. x = –5 Solve the equation.

(x – 3)(x – 3) is a perfect square (x – 3)(x – 3) is a perfect square. Since both factors are the same, you solve only one of them. Helpful Hint

Solve the quadratic equation by factoring. Check your answer. Example 7 Solve the quadratic equation by factoring. Check your answer. 30x = –9x2 – 25 –9x2 – 30x – 25 = 0 Write the equation in standard form. –1(9x2 + 30x + 25) = 0 Factor out the GCF, –1. –1(3x + 5)(3x + 5) = 0 Factor the trinomial. –1 ≠ 0 or 3x + 5 = 0 Use the Zero Product Property. – 1 cannot equal 0. Solve the remaining equation.

Example 8 Solve the quadratic equation by factoring. Check your answer. 3x2 = 4x - 1 (3x – 1)(x – 1) = 0 Factor the trinomial. 3x – 1 = 0 or x – 1 = 0 Use the Zero Product Property. or x = 1 Solve each equation. The solutions are and x = 1.

Example 9 Example 10 Example 11      

Example 12: Application The height in feet of a diver above the water can be modeled by h(t) = –16t2 + 8t + 8, where t is time in seconds after the diver jumps off a platform. Find the time it takes for the diver to reach the water. h = –16t2 + 8t + 8 The diver reaches the water when h = 0. 0 = –16t2 + 8t + 8 0 = –8(2t2 – t – 1) Factor out the GFC, –8. 0 = –8(2t + 1)(t – 1) Factor the trinomial.

  Example 12 Continued Use the Zero Product Property. –8 ≠ 0, 2t + 1 = 0 or t – 1= 0 2t = –1 or t = 1 Solve each equation. Since time cannot be negative, does not make sense in this situation.  It takes the diver 1 second to reach the water. Check 0 = –16t2 + 8t + 8 0 –16(1)2 + 8(1) + 8 0 –16 + 8 + 8 0 0 Substitute 1 into the original equation. 

Example 13 The height of a rocket launched upward from a 160 foot cliff is modeled by the function h(t) = –16t2 + 48t + 160, where h is height in feet and t is time in seconds. When did the rocket reach its maximum height? What was the rocket’s maximum height? Find the time it takes the rocket to reach the ground at the bottom of the cliff.

Lesson Quiz: Part I Use the Zero Product Property to solve each equation. Check your answers. 1. (x – 10)(x + 5) = 0 2. (x + 5)(x) = 0 Solve each quadratic equation by factoring. Check your answer. 3. x2 + 16x + 48 = 0 4. x2 – 11x = –24 10, –5 –5, 0 –4, –12 3, 8

Lesson Quiz: Part II 5. 2x2 + 12x – 14 = 0 1, –7 6. x2 + 18x + 81 = 0 –9 7. –4x2 = 16x + 16 –2 8. The height of a rocket launched upward from a 160 foot cliff is modeled by the function h(t) = –16t2 + 48t + 160, where h is height in feet and t is time in seconds. Find the time it takes the rocket to reach the ground at the bottom of the cliff. 5 s