RTL Design Methodology Transition from Pseudocode & Interface

Slides:



Advertisements
Similar presentations
George Mason University ECE 448 – FPGA and ASIC Design with VHDL ECE 448 Lecture 12 Sorting Example.
Advertisements

Give qualifications of instructors: DAP
CS 151 Digital Systems Design Lecture 37 Register Transfer Level
George Mason University ECE 448 – FPGA and ASIC Design with VHDL ECE 448 Lecture 10 Advanced Testbenches.
Algorithmic State Machine (ASM) Charts
George Mason University ECE 448 – FPGA and ASIC Design with VHDL Finite State Machines State Diagrams, State Tables, Algorithmic State Machine (ASM) Charts,
ECE 448 – FPGA and ASIC Design with VHDL Lecture 13 PicoBlaze I/O & Interrupt Interface.
ECE 448 – FPGA and ASIC Design with VHDL Lecture 15 External SRAM.
ECE 545 Project 1 Part IV Key Scheduling Final Integration List of Deliverables.
Lecture 9 RTL Design Methodology Sorting Example.
SHA-3 Candidate Evaluation 1. FPGA Benchmarking - Phase Round-2 SHA-3 Candidates implemented by 33 graduate students following the same design.
George Mason University Finite State Machines State Diagrams, State Tables, Algorithmic State Machine (ASM) Charts, and VHDL Code ECE 448 Lecture 6.
Lecture 9 RTL Design Methodology. Structure of a Typical Digital System Datapath (Execution Unit) Controller (Control Unit) Data Inputs Data Outputs Control.
RTL Design Methodology Transition from Pseudocode & Interface
Lecture 5B Block Diagrams HASH Example.
Lecture 3 RTL Design Methodology Transition from Pseudocode & Interface to a Corresponding Block Diagram.
Hao Zheng Comp Sci & Eng USF CDA 4253 FPGA System Design Chapter 5 Finite State Machines.
CDA 4253 FPGA System Design RTL Design Methodology 1 Hao Zheng Comp Sci & Eng USF.
1 ECE 545 – Introduction to VHDL Algorithmic State Machines Sorting Example ECE 656 Lecture 8.
ECE 448 Lecture 6 Finite State Machines State Diagrams vs. Algorithmic State Machine (ASM) Charts.
George Mason University Design of Controllers using Algorithmic State Machine (ASM) Charts ECE 545 Lecture 12.
Algorithmic State Machine (ASM) Charts: VHDL Code & Timing Diagrams
State Machine Design with an HDL
George Mason University Finite State Machines Refresher ECE 545 Lecture 11.
Implementing Combinational
RTL Design Methodology Transition from Pseudocode & Interface
ECE 448 Lecture 6 Finite State Machines State Diagrams, State Tables, Algorithmic State Machine (ASM) Charts, and VHDL Code.
Hash Function Performance Metrics
Hao Zheng Comp Sci & Eng USF
ECE 448 Lecture 6 Finite State Machines State Diagrams vs. Algorithmic State Machine (ASM) Charts.
RTL Design Methodology
RTL Design Methodology
ECE 448 Lecture 3 Combinational-Circuit Building Blocks Data Flow Modeling of Combinational Logic ECE 448 – FPGA and ASIC Design with VHDL.
Implementing Combinational and Sequential Logic in VHDL
Lecture 16 PicoBlaze I/O & Interrupt Interface
Algorithmic State Machine (ASM) Charts: VHDL Code & Timing Diagrams
Lecture 18 PicoBlaze I/O Interface
ECE 448 Lecture 3 Combinational-Circuit Building Blocks Data Flow Modeling of Combinational Logic ECE 448 – FPGA and ASIC Design with VHDL.
RTL Design Methodology
Project Deliverables ECE 545 – Introduction to VHDL.
Lecture 18 SORTING in Hardware.
ECE 448: Spring 2015 Lab 3 FPGA Design Flow Based on Aldec Active-HDL.
Lecture 13 PicoBlaze I/O & Interrupt Interface
ECE 448: Spring 2018 Lab 3 – Part 2 FPGA Design Flow Based on
ECE 448 Lecture 13 Multipliers Timing Parameters
ECE 545 Lecture 12 Design of Controllers Finite State Machines and Algorithmic State Machine (ASM) Charts.
ECE 545 Lecture 10 Design of Controllers Finite State Machines and Algorithmic State Machine (ASM) Charts.
ECE 545 Lecture 9 Design of Controllers Finite State Machines and Algorithmic State Machine (ASM) Charts.
ECE 545 Lecture 11 Design of Controllers Finite State Machines and Algorithmic State Machine (ASM) Charts.
RTL Design Methodology Transition from Pseudocode & Interface
ECE 448 Lecture 3 Combinational-Circuit Building Blocks Data Flow Modeling of Combinational Logic ECE 448 – FPGA and ASIC Design with VHDL.
Lecture 15 PicoBlaze I/O & Interrupt Interface
ECE 545 Remaining Tasks.
Lecture 13 PicoBlaze I/O & Interrupt Interface
Lecture 17 PicoBlaze I/O & Interrupt Interface
RTL Design Methodology
RTL Design Methodology Transition from Pseudocode & Interface
ECE 448 Lecture 6 Finite State Machines State Diagrams, State Tables, Algorithmic State Machine (ASM) Charts, and VHDL Code.
RTL Design Methodology
RTL Design Methodology Transition from Pseudocode & Interface
RTL Design Methodology
RTL Design Methodology
RTL Design Methodology
ECE 448 Lecture 6 Finite State Machines State Diagrams, State Tables, Algorithmic State Machine (ASM) Charts, and VHDL code ECE 448 – FPGA and ASIC Design.
RTL Design Methodology
RTL Design Methodology
ECE 448 Lecture 6 Finite State Machines State Diagrams vs. Algorithmic State Machine (ASM) Charts.
ECE 448: Spring 2018 Lab 3 – Part 2 Design of Controllers
Sequntial-Circuit Building Blocks
RTL Design Methodology
Presentation transcript:

RTL Design Methodology Transition from Pseudocode & Interface Lecture 8 RTL Design Methodology Transition from Pseudocode & Interface to a Corresponding Block Diagram

Required reading P. Chu, FPGA Prototyping by VHDL Examples Chapter 6, FSMD S. Brown and Z. Vranesic, Fundamentals of Digital Logic with VHDL Design Chapter 10.2, Design Examples ECE 448 – FPGA and ASIC Design with VHDL

Structure of a Typical Digital System Data Inputs Control & Status Inputs Control Signals Datapath (Execution Unit) Controller (Control Unit) Status Signals Data Outputs Control & Status Outputs

Hardware Design with RTL VHDL Pseudocode Interface Datapath Controller Block diagram Block diagram State diagram or ASM chart VHDL code VHDL code VHDL code

Steps of the Design Process Text description Interface Pseudocode Block diagram of the Datapath Interface with the division into the Datapath and the Controller ASM chart of the Controller RTL VHDL code of the Datapath, the Controller, and the Top Unit Testbench of the Datapath, the Controller, and the Top Unit Functional simulation and debugging Synthesis and post-synthesis simulation Implementation and timing simulation Experimental testing

Steps of the Design Process Practiced in Class Today Text description Interface Pseudocode Block diagram of the Datapath Interface with the division into the Datapath and the Controller ASM chart of the Controller RTL VHDL code of the Datapath, the Controller, and the Top Unit Testbench of the Datapath, the Controller, and the Top Unit Functional simulation and debugging Synthesis and post-synthesis simulation Implementation and timing simulation Experimental testing

Statistics example

Circuit Interface n 2 clk reset din go done dout dout_mode Statistics

Pseudocode no_1 = no_2 = no_3 = sum = 0 for i=0 to k-1 do sum = sum + din if din > no_1 then no_3 = no_2 no_2 = no_1 no_1 = din elseif (din > no_2) then no_2 = din elseif (din > no_3) then no_3 = din end if end for avr = sum / k

Interface Table Port Width Meaning clk 1 System clock. reset System reset. din n Input Data. go Signal active high for k clock cycles during which Input Data is read by the circuit. done Signal set to high after the output is ready. dout Output dependent on the dout_mode input. dout_mode 2 Control signal determining value available at the output. 00: avr, 01: no_1, 10: no_2, 11: no_3.

Block diagram of the Datapath din n n n en1 en reset rst n+m clk clk A gt1 n+m no_1 A>B n esum en reset n B rst clk clk 1 s2 sum n+m en2 enc en reset en reset rst rst clk clk clk clk A gt2 no_2 m A>B n+m n n B i 1 s3 >> m = k-1 en3 en reset rst n clk clk A gt3 avr A>B n no_3 zk no_1 no_2 no_3 B n n n dout_mode 00 01 10 11 2 n dout Block diagram of the Datapath

Interface with the division into the Datapath and the Controller dout_mode din clk reset go n 2 gt1 gt2 gt3 Datapath Controller zk en1 en2 en3 esum enc s2 s3 n dout done