The Unfolding Story of a Redox Chaperone

Slides:



Advertisements
Similar presentations
Bleach Activates a Redox-Regulated Chaperone by Oxidative Protein Unfolding J. Winter, M. Ilbert, P.C.F. Graf, D. Özcelik, U. Jakob Cell Volume 135, Issue.
Advertisements

Volume 26, Issue 1, Pages (April 2007)
Sonja Schmid, Thorsten Hugel  Molecular Cell 
Thor Seneca Thorsen, Rachel Matt, William I. Weis, Brian K. Kobilka 
Structure of an LDLR-RAP Complex Reveals a General Mode for Ligand Recognition by Lipoprotein Receptors  Carl Fisher, Natalia Beglova, Stephen C. Blacklow 
Volume 148, Issue 5, Pages (March 2012)
Volume 32, Issue 3, Pages (November 2008)
Natalie Zeytuni, Raz Zarivach  Structure 
UPF1 Learns to Relax and Unwind
Volume 124, Issue 1, Pages (January 2006)
Protein Kinase C Regulation: C1 Meets C-tail
Xiaojing He, Yi-Chun Kuo, Tyler J. Rosche, Xuewu Zhang  Structure 
Volume 133, Issue 1, Pages (April 2008)
Hsp90: Breaking the Symmetry
Volume 108, Issue 6, Pages (March 2002)
Volume 28, Issue 3, Pages (November 2007)
Volume 130, Issue 6, Pages (September 2007)
Volume 130, Issue 6, Pages (September 2007)
The Mechanism of E. coli RNA Polymerase Regulation by ppGpp Is Suggested by the Structure of their Complex  Yuhong Zuo, Yeming Wang, Thomas A. Steitz 
Roman Kityk, Jürgen Kopp, Irmgard Sinning, Matthias P. Mayer 
Volume 28, Issue 1, Pages (October 2007)
Rong Shi, Laura McDonald, Miroslaw Cygler, Irena Ekiel  Structure 
Nadine Keller, Jiří Mareš, Oliver Zerbe, Markus G. Grütter  Structure 
Volume 31, Issue 2, Pages (July 2008)
UPF1 Learns to Relax and Unwind
Volume 3, Issue 1, Pages (January 2013)
Volume 24, Issue 8, Pages (August 2016)
Seisuke Yamashita, Kozo Tomita  Structure 
Volume 124, Issue 5, Pages (March 2006)
Volume 23, Issue 12, Pages (December 2015)
Volume 90, Issue 1, Pages (July 1997)
The Crystal Structure of the Costimulatory OX40-OX40L Complex
Jiao Yang, Melesse Nune, Yinong Zong, Lei Zhou, Qinglian Liu  Structure 
Qinglian Liu, Wayne A. Hendrickson  Cell 
Volume 26, Issue 1, Pages (April 2007)
Volume 18, Issue 3, Pages (March 2010)
A Drug-Drug Interaction Crystallizes a New Entry Point into the UPR
Mark Del Campo, Alan M. Lambowitz  Molecular Cell 
A Movie of RNA Polymerase II Transcription
Protein Translocation Is Mediated by Oligomers of the SecY Complex with One SecY Copy Forming the Channel  Andrew R. Osborne, Tom A. Rapoport  Cell  Volume.
David Jeruzalmi, Mike O'Donnell, John Kuriyan  Cell 
Breaking Down Order to Keep Cells Tidy
Structure of an RNA Silencing Complex of the CRISPR-Cas Immune System
Volume 23, Issue 6, Pages (June 2015)
Crystal Structures of Mycobacterium tuberculosis KasA Show Mode of Action within Cell Wall Biosynthesis and its Inhibition by Thiolactomycin  Sylvia R.
Crystal Structures of Mycobacterium tuberculosis KasA Show Mode of Action within Cell Wall Biosynthesis and its Inhibition by Thiolactomycin  Sylvia R.
David Jeruzalmi, Mike O'Donnell, John Kuriyan  Cell 
Volume 139, Issue 4, Pages (November 2009)
AMPK and SNF1: Snuffing Out Stress
Gymnastics of Molecular Chaperones
Volume 24, Issue 9, Pages (September 2016)
Volume 130, Issue 6, Pages (September 2007)
Visualizing the ATPase Cycle in a Protein Disaggregating Machine: Structural Basis for Substrate Binding by ClpB  Sukyeong Lee, Jae-Mun Choi, Francis.
Volume 48, Issue 1, Pages (October 2012)
Volume 9, Issue 5, Pages (May 2001)
Sculpting the Proteome with AAA+ Proteases and Disassembly Machines
Structural Basis for Kinase-Mediated Macrolide Antibiotic Resistance
Susan S. Taylor, Nina M. Haste, Gourisankar Ghosh  Cell 
Volume 127, Issue 7, Pages (December 2006)
Volume 27, Issue 1, Pages (July 2007)
Toward a Structural Understanding of Arf Family:Effector Specificity
The Structure of T. aquaticus DNA Polymerase III Is Distinct from Eukaryotic Replicative DNA Polymerases  Scott Bailey, Richard A. Wing, Thomas A. Steitz 
Volume 7, Issue 2, Pages R19-R23 (February 1999)
Joshua J. Sims, Robert E. Cohen  Molecular Cell 
A Molecular View of Anti-ErbB Monoclonal Antibody Therapy
Kevin D. Corbett, James M. Berger  Structure 
Volume 21, Issue 6, Pages (June 2013)
Species-Dependent Ensembles of Conserved Conformational States Define the Hsp90 Chaperone ATPase Cycle  Daniel R. Southworth, David A. Agard  Molecular.
A Dancer Caught Midstep: The Structure of ATP-Bound Hsp70
Volume 25, Issue 1, Pages (January 2017)
Presentation transcript:

The Unfolding Story of a Redox Chaperone Matthias P. Mayer  Cell  Volume 148, Issue 5, Pages 843-844 (March 2012) DOI: 10.1016/j.cell.2012.02.029 Copyright © 2012 Elsevier Inc. Terms and Conditions

Figure 1 Structures and Reaction Cycle of Hsp33 (A) On the left, a cartoon representation of a homology model of E. coli Hsp33 on the structure of Bacillus subtilis Hsp33 (Protein Data Bank [PDB] ID 1vzy; Janda et al., 2004) shows the N-terminal domain in cyan, linker region in dark red, and C-terminal redox-switch domain in green. Lysines and arginines, which do not change in accessibility for proteolytic digestion upon oxidation or substrate binding, are shown as sticks (gray, low accessibility; yellow, high accessibility); lysines and arginines with increased proteolytic accessibility are shown as orange spheres (light orange, small changes). On the right, a truncated variant of E. coli Hsp33 lacking the redox-switch domain (PDB ID 1hw7; Vijayalakshmi et al., 2001) is shown. This construct is thought to represent the activated conformation of Hsp33. One protomer is colored as in the left panel, and the second protomer is in gray except for two segments: 174–192 and 203–221. The stability of these segments changes upon oxidation and substrate binding. Lysines and arginines are colored as in the left panel except that lysines and arginines that become protected upon substrate binding are shown in magenta. (B) Upon oxidative stress, the Zn-coordinating cysteines form disulfide bridges, Zn2+ is released, and the C-terminal redox-switch domain (green) unfolds. Hsp33 dimerizes in the N-terminal core domain (cyan) and possibly swaps the linker regions (brown). The linker region becomes flexible and dynamic, and thus it is able to bind to early unfolding intermediates of denaturing proteins (Reichmann et al., 2012). Upon return to reducing conditions, the redox-switch refolds, but substrate release requires the action of the Hsp70 chaperone DnaK. Cell 2012 148, 843-844DOI: (10.1016/j.cell.2012.02.029) Copyright © 2012 Elsevier Inc. Terms and Conditions