Volume 87, Issue 3, Pages (August 2015)

Slides:



Advertisements
Similar presentations
Sami Boudkkazi, Aline Brechet, Jochen Schwenk, Bernd Fakler  Neuron 
Advertisements

Volume 68, Issue 3, Pages (November 2010)
Takeshi Sakaba, Erwin Neher  Neuron 
Yuanming Wu, Wengang Wang, Ana Díez-Sampedro, George B. Richerson 
Zinc Dynamics and Action at Excitatory Synapses
Variance-Mean Analysis in the Presence of a Rapid Antagonist Indicates Vesicle Depletion Underlies Depression at the Climbing Fiber Synapse  Kelly A.
Postsynaptic Levels of [Ca2+]i Needed to Trigger LTD and LTP
Endocannabinoids Control the Induction of Cerebellar LTD
Burst-Timing-Dependent Plasticity of NMDA Receptor-Mediated Transmission in Midbrain Dopamine Neurons  Mark T. Harnett, Brian E. Bernier, Kee-Chan Ahn,
Role of Glutamate Autoreceptors at Hippocampal Mossy Fiber Synapses
Control of Inhibitory Synaptic Outputs by Low Excitability of Axon Terminals Revealed by Direct Recording  Shin-ya Kawaguchi, Takeshi Sakaba  Neuron 
Volume 56, Issue 6, Pages (December 2007)
Volume 84, Issue 1, Pages (October 2014)
Geng-Lin Li, Soyoun Cho, Henrique von Gersdorff  Neuron 
Long-Term Depression of mGluR1 Signaling
Volume 96, Issue 1, Pages e4 (September 2017)
Single-Photon Absorptions Evoke Synaptic Depression in the Retina to Extend the Operational Range of Rod Vision  Felice A. Dunn, Fred Rieke  Neuron  Volume.
Aleksander Sobczyk, Karel Svoboda  Neuron 
Volume 86, Issue 5, Pages (June 2015)
Synaptotagmin-7-Mediated Asynchronous Release Boosts High-Fidelity Synchronous Transmission at a Central Synapse  Fujun Luo, Thomas C. Südhof  Neuron 
Yunyun Han, Pascal S. Kaeser, Thomas C. Südhof, Ralf Schneggenburger 
Kristian Wadel, Erwin Neher, Takeshi Sakaba  Neuron 
Volume 120, Issue 3, Pages (February 2005)
Felix Felmy, Erwin Neher, Ralf Schneggenburger  Neuron 
Kinetics of Releasable Synaptic Vesicles and Their Plastic Changes at Hippocampal Mossy Fiber Synapses  Mitsuharu Midorikawa, Takeshi Sakaba  Neuron 
Volume 90, Issue 3, Pages (May 2016)
Volume 88, Issue 5, Pages (December 2015)
The Reduced Release Probability of Releasable Vesicles during Recovery from Short- Term Synaptic Depression  Ling-Gang Wu, J.Gerard G Borst  Neuron  Volume.
Yongling Zhu, Jian Xu, Stephen F. Heinemann  Neuron 
Spike Timing-Dependent LTP/LTD Mediates Visual Experience-Dependent Plasticity in a Developing Retinotectal System  Yangling Mu, Mu-ming Poo  Neuron 
Synaptic Specializations Support Frequency-Independent Purkinje Cell Output from the Cerebellar Cortex  Josef Turecek, Skyler L. Jackman, Wade G. Regehr 
Nobutake Hosoi, Matthew Holt, Takeshi Sakaba  Neuron 
SK2 Channel Modulation Contributes to Compartment-Specific Dendritic Plasticity in Cerebellar Purkinje Cells  Gen Ohtsuki, Claire Piochon, John P. Adelman,
Triple Function of Synaptotagmin 7 Ensures Efficiency of High-Frequency Transmission at Central GABAergic Synapses  Chong Chen, Rachel Satterfield, Samuel.
Camila Pulido, Federico F. Trigo, Isabel Llano, Alain Marty  Neuron 
Gautam B. Awatramani, Gareth D. Price, Laurence O. Trussell  Neuron 
Inhibitory Regulation of Electrically Coupled Neurons in the Inferior Olive Is Mediated by Asynchronous Release of GABA  Aaron R. Best, Wade G. Regehr 
Differential Expression of Posttetanic Potentiation and Retrograde Signaling Mediate Target-Dependent Short-Term Synaptic Plasticity  Michael Beierlein,
Fast Ca2+ Buffer-Dependent Reliable but Plastic Transmission at Small CNS Synapses Revealed by Direct Bouton Recording  Shin-ya Kawaguchi, Takeshi Sakaba 
Adenosine A2A Receptors Are Essential for Long-Term Potentiation of NMDA-EPSCs at Hippocampal Mossy Fiber Synapses  Nelson Rebola, Rafael Lujan, Rodrigo.
Long-Term Depression Properties in a Simple System
Dario Brambilla, David Chapman, Robert Greene  Neuron 
Volume 20, Issue 4, Pages (April 1998)
Sung E. Kwon, Edwin R. Chapman  Neuron 
Manami Yamashita, Shin-ya Kawaguchi, Tetsuya Hori, Tomoyuki Takahashi 
Volume 16, Issue 3, Pages (March 1996)
Volume 85, Issue 5, Pages (March 2015)
Interaction of Postsynaptic Receptor Saturation with Presynaptic Mechanisms Produces a Reliable Synapse  Kelly A. Foster, Anatol C. Kreitzer, Wade G.
CAPS-1 and CAPS-2 Are Essential Synaptic Vesicle Priming Proteins
Noradrenergic Control of Associative Synaptic Plasticity by Selective Modulation of Instructive Signals  Megan R. Carey, Wade G. Regehr  Neuron  Volume.
Tiago Branco, Kevin Staras, Kevin J. Darcy, Yukiko Goda  Neuron 
Marta Navarrete, Alfonso Araque  Neuron 
The Decrease in the Presynaptic Calcium Current Is a Major Cause of Short-Term Depression at a Calyx-Type Synapse  Jianhua Xu, Ling-Gang Wu  Neuron  Volume.
Volume 63, Issue 6, Pages (September 2009)
Serotonergic Modulation of Sensory Representation in a Central Multisensory Circuit Is Pathway Specific  Zheng-Quan Tang, Laurence O. Trussell  Cell Reports 
Stephanie Rudolph, Linda Overstreet-Wadiche, Jacques I. Wadiche  Neuron 
Encoding of Oscillations by Axonal Bursts in Inferior Olive Neurons
Synaptotagmin-1- and Synaptotagmin-7-Dependent Fusion Mechanisms Target Synaptic Vesicles to Kinetically Distinct Endocytic Pathways  Ying C. Li, Natali.
Volume 57, Issue 3, Pages (February 2008)
Xiling Li, Pragya Goel, Joyce Wondolowski, Jeremy Paluch, Dion Dickman 
Burst-Timing-Dependent Plasticity of NMDA Receptor-Mediated Transmission in Midbrain Dopamine Neurons  Mark T. Harnett, Brian E. Bernier, Kee-Chan Ahn,
Synaptic Specializations Support Frequency-Independent Purkinje Cell Output from the Cerebellar Cortex  Josef Turecek, Skyler L. Jackman, Wade G. Regehr 
Kinetics of Synaptic Vesicle Refilling with Neurotransmitter Glutamate
Taro Ishikawa, Yoshinori Sahara, Tomoyuki Takahashi  Neuron 
Alexandre Mathy, Beverley A. Clark, Michael Häusser  Neuron 
Volume 57, Issue 3, Pages (February 2008)
Christian Hansel, David J. Linden  Neuron 
Nicole Calakos, Susanne Schoch, Thomas C. Südhof, Robert C. Malenka 
Olexiy Kochubey, Norbert Babai, Ralf Schneggenburger  Neuron 
Sami Boudkkazi, Aline Brechet, Jochen Schwenk, Bernd Fakler  Neuron 
Presentation transcript:

Volume 87, Issue 3, Pages 521-533 (August 2015) Modulation of Presynaptic Release Probability by the Vertebrate-Specific Protein Mover  Christoph Körber, Heinz Horstmann, Varun Venkataramani, Frank Herrmannsdörfer, Thomas Kremer, Michaela Kaiser, Darius B. Schwenger, Saheeb Ahmed, Camin Dean, Thomas Dresbach, Thomas Kuner  Neuron  Volume 87, Issue 3, Pages 521-533 (August 2015) DOI: 10.1016/j.neuron.2015.07.001 Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 1 Mover Is Localized to the Outer Membranes of SVs at Active Zones (A and B) Individual confocal sections of mGFP-prelabeled calyces, Mover, and SV marker VGLUT1 (A) or active zone marker Bassoon (B). Colors in merged panel are as follows: pink: Mover and Bassoon/VGLUT1 co-localization outside the mGFP-labeled calyx, and white: Mover and Bassoon/VGLUT1 co-localization inside the mGFP-labeled calyx. Scale bars are 10 μm. (C and D) Representative dSTORM images of putative active zones in the calyx of Held labeled with Mover (red) and either VGLUT1 (C) or Bassoon (D). For overview images, see Figure S1. Scale bars are 500 nm. (E and F) Electron micrographs of immunogold-labeled Mover (E) and Bassoon (F). Gold particles (5 nm) are labeled with arrows. Scale bars are 100 nm. Neuron 2015 87, 521-533DOI: (10.1016/j.neuron.2015.07.001) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 2 Mover Is Efficiently Knocked Down in the Calyx of Held In Vivo (A–C) Individual confocal sections of mGFP-prelabeled calyces, expression of Mover knockdown (KD) (B), and mismatch (MM) (C) shRNA are reported by the expression of mOrange. Wild-type (WT) (A) calyces lack mOrange. Scale bars are 10 μm. mGFP-expressing calyces in the same brain section not expressing mOrange were used as wild-type controls. (D) Three-dimensional quantification of the calyx volume occupied by Mover immunoreactive signal (n = 9–12). Error bars represent SEM. Neuron 2015 87, 521-533DOI: (10.1016/j.neuron.2015.07.001) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 3 Mover Knockdown Does Not Affect Spontaneous Release but Increases the Amplitude of Evoked EPSCs (A) Representative sample current traces are depicted in (A1) (n = 10–15). Parameters of spontaneous release (amplitude, frequency, and kinetics) are shown in (A2)–(A5). (B) Superimposed representative recordings of voked EPSCs from wild-type, knockdown, mismatch, and rescue control synapses are shown in (B1). The amplitude of evoked EPSCs of Mover knockdown calyces is significantly increased (B2), whereas the kinetic properties of the EPSC remain unchanged (B3–B5) (n = 10–20). Error bars represent SEM. Neuron 2015 87, 521-533DOI: (10.1016/j.neuron.2015.07.001) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 4 Mover Knockdown Increases the Vesicular Pr, Resulting in an Increased and Accelerated STD, whereas RRP Size and SV Replenishment Are Not Altered (A) Superimposed scaled representative current traces recorded during 100-Hz stimulus trains (50 stimuli). (B) Averaged normalized EPSC amplitudes during 100-Hz trains. (C) Averaged cumulative EPSC amplitudes during 100-Hz trains. (D–I) Quantification of RRP size (D), replenishment rate (E), STD parameters (τSTD, F; extent of depression, G; PPR, H), and compound Pr (I) (n = 10–20). Error bars represent SEM. Neuron 2015 87, 521-533DOI: (10.1016/j.neuron.2015.07.001) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 5 Recovery from Synaptic Depression Is Accelerated in Mover Knockdown Synapses (A) Superimposed scaled representative current traces. Each trace begins with an RRP-depleting stimulus train and is followed by one test pulse. The time interval between depletion and test stimuli increased in each of the traces up to 15 s. (B) Averaged fraction of recovery from depression induced by 20 stimuli at 100 Hz. Data were fitted using a mono-exponential function (fit to average data are shown). Inset shows early time points for WT and KD calyces. (C) Quantification of recovery time constants (n = 8–11 calyces analyzed individually). Error bars represent SEM. Neuron 2015 87, 521-533DOI: (10.1016/j.neuron.2015.07.001) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 6 Presynaptic Capacitance Recordings Confirm an Increased Vesicular Pr after Knockdown of Mover (A) Representative scaled capacitance jumps elicited by step depolarizations of 2, 10, and 30 ms duration. (B) Capacitance jumps induced by 1, 2, 5, 10, and 30 ms depolarization. A mono-exponential fit to the normalized (to the 10-ms induced ΔCm) averaged data is shown. (C) Time constants of the mono-exponential fits obtained from individual cell data (n = 8–13). Error bars represent SEM. Neuron 2015 87, 521-533DOI: (10.1016/j.neuron.2015.07.001) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 7 Presynaptic Calcium Currents and AP Waveforms Are Not Affected by Mover Knockdown (A) Representative calcium currents induced by 5-, 10-, 30-, and 50-ms step depolarizations. (B) Quantification of charge transfer over the indicated stimulus durations (n = 6–20). (C) Representative scaled presynaptic AP waveforms in response to 1-Hz fiber stimulation. (D and E) Quantification of AP FWHM (D) and AP amplitude (E) (n = 5 per group). Error bars represent SEM. Neuron 2015 87, 521-533DOI: (10.1016/j.neuron.2015.07.001) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 8 The Calcium Sensitivity of Release Is Increased in Mover Knockdown Calyces (A) Amplitudes of evoked EPSCs under various extracellular calcium concentrations normalized to EPSC recorded in 2 mM extracellular calcium. Data were fitted using an exponential growth function. (B) Average growth constants (K) (n = 6). (C) Example traces of calcium uncaging experiments. Top: presynaptic [Ca2+]I; bottom: postsynaptic EPSC. (D and E) Dependence of EPSC amplitude (D) and peak release rate (E) on [Ca2+]i. Each dot represents an individual uncaging stimulus (flash) (n = 30–39 flashes from five to nine calyces in each group; p = 0.013 [EPSC amplitudes] and p = 0.049 [peak release rate]; ANCOVA). Error bars represent SEM. Neuron 2015 87, 521-533DOI: (10.1016/j.neuron.2015.07.001) Copyright © 2015 Elsevier Inc. Terms and Conditions