Electrostatic Control of Phospholipid Polymorphism

Slides:



Advertisements
Similar presentations
Liposomes, Disks, and Spherical Micelles: Aggregate Structure in Mixtures of Gel Phase Phosphatidylcholines and Poly(Ethylene Glycol)-Phospholipids Markus.
Advertisements

Line Active Hybrid Lipids Determine Domain Size in Phase Separation of Saturated and Unsaturated Lipids  Robert Brewster, Samuel A. Safran  Biophysical.
Interaction of LL-37 with Model Membrane Systems of Different Complexity: Influence of the Lipid Matrix  E. Sevcsik, G. Pabst, W. Richter, S. Danner,
Ismail M. Hafez, Steven Ansell, Pieter R. Cullis  Biophysical Journal 
Thomas G. Anderson, Harden M. McConnell  Biophysical Journal 
Computer Simulation of Small Molecule Permeation across a Lipid Bilayer: Dependence on Bilayer Properties and Solute Volume, Size, and Cross-Sectional.
Madoka Suzuki, Hideaki Fujita, Shin’ichi Ishiwata  Biophysical Journal 
Molecular Dynamics Simulations of the Lipid Bilayer Edge
Mechanical Properties of Actin Stress Fibers in Living Cells
Scott D. Shoemaker, T. Kyle Vanderlick  Biophysical Journal 
R. Jay Mashl, H. Larry Scott, Shankar Subramaniam, Eric Jakobsson 
Volume 112, Issue 7, Pages (April 2017)
Composition Fluctuations in Lipid Bilayers
Determination of the Hydrocarbon Core Structure of Fluid Dioleoylphosphocholine (DOPC) Bilayers by X-Ray Diffraction Using Specific Bromination of the.
Nanostructure of Cationic Lipid-Oligonucleotide Complexes
D. Groen, G.S. Gooris, J.A. Bouwstra  Biophysical Journal 
Fusion Peptides Promote Formation of Bilayer Cubic Phases in Lipid Dispersions. An X- Ray Diffraction Study  Boris G. Tenchov, Robert C. MacDonald, Barry.
Volume 84, Issue 5, Pages (May 2003)
Tracking Phospholipid Populations in Polymorphism by Sideband Analyses of 31P Magic Angle Spinning NMR  Liam Moran, Nathan Janes  Biophysical Journal 
Benjamin L. Stottrup, Sarah L. Keller  Biophysical Journal 
Ivan V. Polozov, Klaus Gawrisch  Biophysical Journal 
Volume 83, Issue 6, Pages (December 2002)
Gel-Assisted Formation of Giant Unilamellar Vesicles
Structure of Supported Bilayers Composed of Lipopolysaccharides and Bacterial Phospholipids: Raft Formation and Implications for Bacterial Resistance 
Volume 93, Issue 2, Pages (July 2007)
Role of Cholesterol in the Formation and Nature of Lipid Rafts in Planar and Spherical Model Membranes  Jonathan M. Crane, Lukas K. Tamm  Biophysical.
Volume 74, Issue 5, Pages (May 1998)
Direct Visualization of Lipid Domains in Human Skin Stratum Corneum's Lipid Membranes: Effect of pH and Temperature  I. Plasencia, L. Norlén, L.A. Bagatolli 
Volume 106, Issue 3, Pages (February 2014)
DNA Release from Lipoplexes by Anionic Lipids: Correlation with Lipid Mesomorphism, Interfacial Curvature, and Membrane Fusion  Yury S. Tarahovsky, Rumiana.
Actin Assembly at Model-Supported Lipid Bilayers
Alexander J. Sodt, Richard W. Pastor  Biophysical Journal 
Sarah L. Veatch, Sarah L. Keller  Biophysical Journal 
Volume 93, Issue 12, Pages (December 2007)
Obstructed Diffusion in Phase-Separated Supported Lipid Bilayers: A Combined Atomic Force Microscopy and Fluorescence Recovery after Photobleaching Approach 
G. Garbès Putzel, Mark J. Uline, Igal Szleifer, M. Schick 
Molecular View of Hexagonal Phase Formation in Phospholipid Membranes
Abhishek Mandal, Patrick C.A. van der Wel  Biophysical Journal 
In Situ Mechanical Analysis of Myofibrillar Perturbation and Aging on Soft, Bilayered Drosophila Myocardium  Gaurav Kaushik, Alexander Fuhrmann, Anthony.
Volume 102, Issue 1, Pages (January 2012)
Spontaneous Formation of Two-Dimensional and Three-Dimensional Cholesterol Crystals in Single Hydrated Lipid Bilayers  Roy Ziblat, Iael Fargion, Leslie.
Acyl Chain Length and Saturation Modulate Interleaflet Coupling in Asymmetric Bilayers: Effects on Dynamics and Structural Order  Salvatore Chiantia,
Volume 113, Issue 9, Pages (November 2017)
Lori R. Nyland, David W. Maughan  Biophysical Journal 
Volume 94, Issue 11, Pages (June 2008)
Philip J. Robinson, Teresa J.T. Pinheiro  Biophysical Journal 
K.A. Riske, L.Q. Amaral, H.-G. Döbereiner, M.T. Lamy 
Lipid Asymmetry in DLPC/DSPC-Supported Lipid Bilayers: A Combined AFM and Fluorescence Microscopy Study  Wan-Chen Lin, Craig D. Blanchette, Timothy V.
Sergi Garcia-Manyes, Gerard Oncins, Fausto Sanz  Biophysical Journal 
Volume 99, Issue 11, Pages (December 2010)
Volume 84, Issue 3, Pages (March 2003)
Bending and Puncturing the Influenza Lipid Envelope
Volume 85, Issue 3, Pages (September 2003)
Main Phase Transitions in Supported Lipid Single-Bilayer
Phase Equilibria in DOPC/DPPC-d62/Cholesterol Mixtures
Volume 99, Issue 11, Pages (December 2010)
Transfer of Arginine into Lipid Bilayers Is Nonadditive
Alexander Spaar, Christian Münster, Tim Salditt  Biophysical Journal 
Volume 83, Issue 6, Pages (December 2002)
Frequency-Dependent Shear Impedance of the Tectorial Membrane
Temperature Dependence of the Surface Topography in Dimyristoylphosphatidylcholine/Distearoylphosphatidylcholine Multibilayers  Marie-Cécile Giocondi,
Volume 112, Issue 7, Pages (April 2017)
Madoka Suzuki, Hideaki Fujita, Shin’ichi Ishiwata  Biophysical Journal 
Rumiana Koynova, Robert C. MacDonald  Biophysical Journal 
Probing the Lipid Membrane Dipole Potential by Atomic Force Microscopy
Geert van den Bogaart, Jacek T. Mika, Victor Krasnikov, Bert Poolman 
Evidence of Cholesterol Accumulated in High Curvature Regions: Implication to the Curvature Elastic Energy for Lipid Mixtures  Wangchen Wang, Lin Yang,
Domain Growth, Shapes, and Topology in Cationic Lipid Bilayers on Mica by Fluorescence and Atomic Force Microscopy  Ariane E. McKiernan, Timothy V. Ratto,
Volume 90, Issue 4, Pages (February 2006)
Hong Xing You, Xiaoyang Qi, Gregory A. Grabowski, Lei Yu 
Presentation transcript:

Electrostatic Control of Phospholipid Polymorphism Yury S. Tarahovsky, A. Larry Arsenault, Robert C. MacDonald, Thomas J. McIntosh, Richard M. Epand  Biophysical Journal  Volume 79, Issue 6, Pages 3193-3200 (December 2000) DOI: 10.1016/S0006-3495(00)76552-0 Copyright © 2000 The Biophysical Society Terms and Conditions

Figure 1 Freeze-fracture surface of the hexagonal HII phase of a mixture of E-DOPC and cardiolipin, MR=2:1, charge ratio CR(+/−)=1:1. (A) Longitudinal and (B) transverse fracture surfaces of lipid tubes. Asterisks represent regions chosen for FFT analysis (insets in lower right of each panel). That region in A chosen for analysis is shown at higher magnification in the upper right corner. Bar, 200nm Biophysical Journal 2000 79, 3193-3200DOI: (10.1016/S0006-3495(00)76552-0) Copyright © 2000 The Biophysical Society Terms and Conditions

Figure 2 Plots of reciprocal spacings of observed x-ray reflections versus Miller indices (h, k, and l) for 1:1 EDOPC/CL in the cubic phase, 2:1 EDOPC/CL in the hexagonal phase, and 4:1 EDOPC/CL in the cubic phase. The solid lines indicate the least squares fits to the data points (R2>0.999 for all cases). The slopes of the lines give the fundamental repeating units of: (A) d=124.0Å for the cubic phase of 1:1 EDOPC/CL (CR(+/−)=1:2); (B) d=58.2Å for the hexagonal phase of 2:1 EDOPC/CL (CR(+/−)=1:1); (C) and d=126.4Å for the cubic phase of 4:1 EDOPC/CL (CR(+/−)=2:1.). Biophysical Journal 2000 79, 3193-3200DOI: (10.1016/S0006-3495(00)76552-0) Copyright © 2000 The Biophysical Society Terms and Conditions

Figure 3 Freeze-fracture surface of cubic phases. The two upper panels are of ordered domains found in the mixture of E-DOPC and cardiolipin, mole ratio=1:1 and CR(+/−)=1:2. Surfaces of fracture planes are shown with (A) tetragonal as well as (B) hexagonal arrays. The two lower panels are of ordered domains found in the mixture of E-DOPC and cardiolipin, mole ratio=4:1 and CR(+/−)=2:1. Surfaces of fracture planes are shown with (C) tetragonal as well as (D) hexagonal arrays. Asterisks indicate regions chosen for Fourier transforms (insets at top and bottom, center) and the inverse Fourier transformed images are shown in the four insets in the center of the figure. Bars, 50nm. Biophysical Journal 2000 79, 3193-3200DOI: (10.1016/S0006-3495(00)76552-0) Copyright © 2000 The Biophysical Society Terms and Conditions

Figure 4 Freeze-fracture surfaces of lamellar phase-forming E-DOPC/cardiolipin mixtures. (A and C) Samples of E-DOPC and cardiolipin liposomes, respectively, showing lamellar-phase bilayer vesicles. (B) The mixture, MR=1:2, CR(+/−)=1:4. This composition gave fracture surfaces that were indistinguishable from those of the mixture with the inverse charge ratio, MR=8:1, CR(+/−)=4:1, and so the latter surfaces are not shown. Numerous intermembrane stalk-like contacts are indicative of the sponge structure of these two compositions. Bar, 200nm. Biophysical Journal 2000 79, 3193-3200DOI: (10.1016/S0006-3495(00)76552-0) Copyright © 2000 The Biophysical Society Terms and Conditions