Using Haplotypes in Breeding Programs

Slides:



Advertisements
Similar presentations
2007 Paul VanRaden 1, Jeff O’Connell 2, George Wiggans 1, Kent Weigel 3 1 Animal Improvement Programs Lab, USDA, Beltsville, MD, USA 2 University of Maryland.
Advertisements

Perspectives from Human Studies and Low Density Chip Jeffrey R. O’Connell University of Maryland School of Medicine October 28, 2008.
Genomic imputation and evaluation using 1074 high density Holstein genotypes P. M. VanRaden 1, D. J. Null 1 *, G.R. Wiggans 1, T.S. Sonstegard 2, E.E.
2007 Paul VanRaden and Jeff O’Connell Animal Improvement Programs Lab, Beltsville, MD U MD College of Medicine, Baltimore, MD
G.R. Wiggans Animal Improvement Programs Laboratory Agricultural Research Service, USDA Beltsville, MD G.R. WiggansAlta Genetics.
2007 Paul VanRaden, George Wiggans, Jeff O’Connell, John Cole, Animal Improvement Programs Laboratory Tad Sonstegard, and Curt Van Tassell Bovine Functional.
How Genomics is changing Business and Services of Associations Dr. Josef Pott, Weser-Ems-Union eG, Germany.
2007 Paul VanRaden 1, Curt Van Tassell 2, George Wiggans 1, Tad Sonstegard 2, Jeff O’Connell 1, Bob Schnabel 3, Jerry Taylor 3, and Flavio Schenkel 4,
Mating Programs Including Genomic Relationships and Dominance Effects
Chuanyu Sun Paul VanRaden National Association of Animal breeders, USA Animal Improvement Programs Laboratory, USA Increasing long term response by selecting.
2007 Paul VanRaden 1, George Wiggans 1, Curt Van Tassell 2, Tad Sonstegard 2, Jeff O’Connell 1, Bob Schnabel 3, Jerry Taylor 3, and Flavio Schenkel 4,
G.R. Wiggans Animal Improvement Programs Laboratory Agricultural Research Service, USDA Beltsville, MD 2010 G.R. WiggansDCRC.
2007 J. B. Cole 1,*, P. M. VanRaden 1, J. R. O'Connell 3, C. P. Van Tassell 1,2, T. S. Sonstegard 2, R. D. Schnabel 4, J. F. Taylor 4, and G. R. Wiggans.
Wiggans, 2013SRUC Imputation (1) Dr. George R. Wiggans Animal Improvement Programs Laboratory Agricultural Research Service, USDA Beltsville, MD ,
2007 Paul VanRaden, Curt Van Tassell, George Wiggans, Tad Sonstegard, and Jeff O’Connell Animal Improvement Programs Laboratory and Bovine Functional Genomics.
John B. Cole Animal Improvement Programs Laboratory Agricultural Research Service, USDA Beltsville, MD March 2012 AIPL.
Bovine Genomics The Technology and its Applications Gerrit Kistemaker Chief Geneticist, Canadian Dairy Network (CDN) Many slides were created by.
2007 Paul VanRaden and Mel Tooker Animal Improvement Programs Laboratory, USDA Agricultural Research Service, Beltsville, MD, USA
2007 Paul VanRaden, George Wiggans, Jeff O’Connell, John Cole, Animal Improvement Programs Laboratory Tad Sonstegard, and Curt Van Tassell Bovine Functional.
John B. Cole 1, Daniel J. Null *1, Chuanyu Sun 2, and Paul M. VanRaden 1 1 Animal Genomics and Improvement 2 Sexing Technologies Laboratory Navasota, TX.
2007 Paul VanRaden Animal Improvement Programs Lab, USDA, Beltsville, MD, USA 2009 Mixing Different SNP Densities Mixing Different.
2007 Melvin Tooker and Paul VanRaden Animal Improvement Programs Lab, USDA, Beltsville, MD, USA 2009 Happy Bulls, Happy Cows,
2007 Paul VanRaden, George Wiggans, Jeff O’Connell, John Cole, Animal Improvement Programs Laboratory Tad Sonstegard, and Curt Van Tassell Bovine Functional.
John B. Cole Animal Improvement Programs Laboratory Agricultural Research Service, USDA Beltsville, MD New Tools for.
Cooper, 2014CDCB Meeting Aug. 5(1) T.A. Cooper, G.R. Wiggans and P.M. VanRaden Animal Genomics and Improvement Laboratory, Agricultural Research Service,
2007 Paul VanRaden, Mel Tooker, and Melvin Kuhn Animal Improvement Programs Laboratory, USDA Agricultural Research Service, Beltsville, MD, USA
John B. Cole, Ph.D. Animal Improvement Programs Laboratory Agricultural Research Service, USDA Beltsville, MD, USA The U.S. genetic.
T. A. Cooper and G.R. Wiggans Animal Improvement Programs Laboratory Agricultural Research Service, USDA Beltsville, MD Council.
Adjustment of selection index coefficients and polygenic variance to improve regressions and reliability of genomic evaluations P. M. VanRaden, J. R. Wright*,
Jeff O’ConnellInterbull annual meeting, Orlando, FL, July 2015 (1) J. R. O’Connell 1 and P. M. VanRaden 2 1 University of Maryland School of Medicine,
2007 Paul VanRaden Animal Improvement Programs Lab, USDA, Beltsville, MD, USA Pete Sullivan Canadian Dairy Network, Guelph, ON, Canada
J. B. Cole * and P. M. VanRaden Animal Improvement Programs Laboratory Agricultural Research Service, USDA Beltsville, MD
2007 Melvin Tooker Animal Improvement Programs Laboratory USDA Agricultural Research Service, Beltsville, MD, USA
G.R. Wiggans* and P.M. VanRaden Animal Improvement Programs Laboratory Agricultural Research Service, USDA Beltsville, MD
2007 Paul VanRaden, Melvin Tooker*, George Wiggans Animal Improvement Programs Laboratory 2009 Can you believe those genomic.
2007 Paul VanRaden Animal Improvement Programs Laboratory USDA Agricultural Research Service, Beltsville, MD, USA
Paul VanRaden and John Cole Animal Improvement Programs Laboratory Beltsville, MD, USA 2004 Planned Changes to Models and Trait Definitions.
P. M. VanRaden and T. A. Cooper * Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA
George R. Wiggans Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD Select Sires’
April 2010 (1) Prediction of Breed Composition & Multibreed Genomic Evaluations K. M. Olson and P. M. VanRaden.
2007 Paul VanRaden and Melvin Tooker* Animal Improvement Programs Laboratory 2010 Gains in reliability from combining subsets.
2007 Paul VanRaden 1, Jeff O’Connell 2, George Wiggans 1, Kent Weigel 3 1 Animal Improvement Programs Lab, USDA, Beltsville, MD, USA 2 University of Maryland.
2007 Paul VanRaden 1, Jeff O’Connell 2, George Wiggans 1, Kent Weigel 3 1 Animal Improvement Programs Lab, USDA, Beltsville, MD, USA 2 University of Maryland.
G.R. Wiggans Animal Improvement Programs Laboratory Agricultural Research Service, USDA Beltsville, MD G.R. WiggansSelect Sire.
2007 Paul VanRaden, George Wiggans, Jeff O’Connell, John Cole, Animal Improvement Programs Laboratory Tad Sonstegard, and Curt Van Tassell Bovine Functional.
2007 John Cole, Paul VanRaden, George Wiggans, and Melvin Kuhn Animal Improvement Programs Laboratory USDA Agricultural Research Service, Beltsville, MD,
G.R. Wiggans Animal Improvement Programs Laboratory Agricultural Research Service, USDA Beltsville, MD G.R. WiggansADSA 18.
G.R. Wiggans 1, T. A. Cooper 1 *, K.M. Olson 2 and P.M. VanRaden 1 1 Animal Improvement Programs Laboratory Agricultural Research Service, USDA Beltsville,
2007 Paul VanRaden, George Wiggans, Jeff O’Connell, John Cole, Animal Improvement Programs Laboratory Tad Sonstegard, and Curt Van Tassell Bovine Functional.
2007 Paul VanRaden Animal Improvement Programs Laboratory, USDA Agricultural Research Service, Beltsville, MD, USA 2008 New.
Multibreed Genomic Evaluations in Purebred Dairy Cattle K. M. Olson 1 and P. M. VanRaden 2 1 National Association of Animal Breeders 2 AIPL, ARS, USDA.
G.R. Wiggans Animal Improvement Programs Laboratory Agricultural Research Service, USDA Beltsville, MD Select Sires‘ Holstein.
G.R. Wiggans Animal Improvement Programs Laboratory Agricultural Research Service, USDA Beltsville, MD 2011 National Breeders.
2007 Paul VanRaden Animal Improvement Programs Laboratory, USDA Agricultural Research Service, Beltsville, MD, USA 2007 Genetic evaluation.
John B. Cole Animal Improvement Programs Laboratory Agricultural Research Service, USDA Beltsville, MD Biological Insights.
G.R. Wiggans, T. A. Cooper* and P.M. VanRaden Animal Improvement Programs Laboratory Agricultural Research Service, USDA Beltsville, MD
2007 Paul VanRaden 1, Curt Van Tassell 2, George Wiggans 1, Tad Sonstegard 2, Bob Schnabel 3, Jerry Taylor 3, and Flavio Schenkel 4, Paul VanRaden 1, Curt.
G.R. Wiggans Animal Improvement Programs Laboratory Agricultural Research Service, USDA Beltsville, MD 2011 G.R. Wiggans DNA.
Paul VanRaden Animal Improvement Programs Laboratory Agricultural Research Service, USDA Beltsville, MD 2014 Paul VanRaden Advancing.
Use of DNA information in Genetic Programs.
Visualization of Results from Genomic Predictions
Distribution and Location of Genetic Effects for Dairy Traits
Methods to compute reliabilities for genomic predictions of feed intake Paul VanRaden, Jana Hutchison, Bingjie Li, Erin Connor, and John Cole USDA, Agricultural.
Genomic Evaluations.
DSEC October 2009.
Genomic Selection in Dairy Cattle
Predictions of Breed Composition Using Holsteins, Jersey, and Brown Swiss Genotypes K. M. Olson and P. M. VanRaden.
Can you believe those genomic evaluations for young bulls?
Perspectives from Human Studies and Low Density Chip
Increased reliability of genetic evaluations for dairy cattle in the United States from use of genomic information Abstr.
Presentation transcript:

Using Haplotypes in Breeding Programs

What is imputation? Prediction of unknown genotypes from observed genotypes Pedigree haplotyping Matching allele patterns Genotypes indicate how many copies of each allele were inherited Haplotypes indicate which alleles are on which chromosome

Why impute haplotypes? Predict dam from progeny SNP Predict unknown SNP from known Measure 3,000, predict 50,000 SNP Measure 50,000, predict 850,000 Measure each haplotype at highest density only a few times Increase reliabilities

How does imputation work? Identify haplotypes in population using many markers Track haplotypes with fewer markers e.g., track a 20 SNP block with 4 SNP 4 SNP: 2202 20 SNP: 20220200020020020002

How well does haplotyping work? Half of young animals assigned 3K Proven bulls, cows all had 50K Dams imputed using 50K and 3K Half of ALL animals assigned 3K Could 3K CDDR genotypes help? 10,000 proven bulls yet to genotype Should cows with 3K be predictors?

Correlations of 3K and PA with 50K Half of young animals had 3K PTA, half had 50K PTA Trait Corr(3K,50K)2 Corr(PA,50K)2 Gain NM$ .899 .518 79% Milk .920 .523 83% Fat .516 Prot .555 82% PL .933 .498 87% SCS .912 .417 85% DPR .937 .539 86%

Using 3K as reference genotypes Half of ALL animal NM$ were from 3K, half 50K REL gain as compared to all 50K Breed 50K 3K Imputed dams HO 90% 73% 36% JE 82% 56% 44% BS 84% 72% 55%

What about the HD chip? In simulation, reliability averaged 84.0% for 500K SNP versus 82.6% for 50K SNP Haplotypes can fill in almost all missing SNP when moving from 50K to 500K

Selection limits and Mendelian sampling Genotypes for 43,385 SNP using the Illumina BovineSNP50 Haplotypes imputed with findhap.f90 (VanRaden et al., 2010) 1,455 Brown Swiss bulls and cows 40,351 Holstein bulls and cows 4,064 Jersey bulls and cows Results shown for net merit

How far can we go with selection? Breed Best chromosomes Best individual SNP BS 3,857 4,569 HO 7,526 11,841 JE 4,678 5,758

How much sampling variance is there? Breed All loci unlinked Perfect linkage BS 2,359 40,458 HO 21,581 94,343 JE 3,978 44,552

Why are HO different from BS and JE? BS & JE: No QTL HO: Multiple QTL for NM$ ― DGAT1 on BTA 14, AIPL marker on BTA 18

What can we conclude? Higher densities probably less valuable than additional animals Imputation can accurately fill in missing SNP when moving from lower to higher densities Selection limits and sampling variances differ among breeds