Carbon Monoxide “Insertion”

Slides:



Advertisements
Similar presentations
1 Chiral Anion-Mediated Asymmetric Ion Pairing Chemistry Reporter: Zhi-Yong Han
Advertisements

Rhodium Catalyzed Direct C-H Functionalization 陈殿峰
1 D. A. Evans’ Asymmetric Synthesis — From 80’s Chiral Auxiliary to 90’s Copper Complexes and Their Applications in Total Synthesis Supervisor: Professor.
Organometallic Catalysts
Catalytic Cross-coupling Reactions with Unactivated Alkyl Electrophiles and Alkyl Nucleophiles Heng Su 04/11/2008 Department of Chemistry Brandeis University.
Reporter: Yu Ting Huang Advising Prof: Ru Jong Jeng 1.
Recent Development for Stereoselective Synthesis of 1,3-Polyol Ye Zhu Prof. Burgess’ Group Aug. 19, 2010.
Alkylation by Asymmetric Phase- Transfer Catalysis 张文全.
Lecture 14 APPLICATIONS IN ORGANIC SYNTHESIS Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
The application of alkaline metal(Ca, Sr, Ba) complex as catalyst in organic chemistry 张文全 1.
--- Dead Ends and Detours Supervisors: Prof. Zhen Yang & Jiahua Chen Reporter: Weiwu Ren The Journey of Azadirachtin.
Enantioselective Synthesis of Biphenols from 1,4-Diketones by Traceless Central-to-axial Chirality Exchange Research By: F Guo, LC Konokol, and RJ Thomson;
Introduction Asymmetric reduction of C=N bonds represents a powerful method for the asymmetric formation of chiral amines. 1 Whilst many methods exist.
Organo-metal cooperative catalysis
Transition-Metal-Catalyzed Enantioselective Insertion of carbenes or carbenoids into the Heteroatom-Hydrogen Bond Reactions Xiaolei Lian
1 Single electron transfer reaction involving 1,3-dicarbonyl compounds and its synthetic applications Reporter: Jie Yu Oct. 31, 2009.
Recent Progress in sp 3 C-H Activation Catalyzed by Palladium Bo Yao.
化 学 系 Department of Chemistry Catellani Reaction
何玉萍 Palladium(II)-Catalyzed Alkene Functionalization.
Career-in-review Keiji Maruoka Reporter: Li Chen Supervisor: Prof. David Zhigang Wang
Introduction to catalysis Textbook H: Chapter 14 Textbook A: Part IV – Introduction.
Iron Catalysed Oxidation Reactions. Moftah Darwish and Martin Wills * * Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK. Conclusion:
Wangqing Kong Zhu’s group meeting 13 th, Aug, 2015 Intramolecular Asymmetric Heck Reaction and Application in Natural Products Synthesis.
Reactions Catalyzed by Rhenium Carbonyl Complexes 杜宇鎏
1 Cyclopentadienyl-Ruthenium Catalysts --- One Group of Ru(II) Complexes Huijun ZHANG
Buchwald-Hartwig Cross Coupling Reaction Reporter: Ying-Chieh CHAO Lecturer: Professor Guey-Sheng Liou Advisor: Professor Ru-Jong Jeng Data:2013/12/27.
1 CATALYTIC ASYMMETRIC NOZAKI- HIYAMA-KISHI REACTION: ROLE OF ORGANOCHROMIUM COMPOUNDS AND NOVEL SALEN LIGANDS A RKAJYOTI C HAKRABARTY Prof. Uday Maitra’s.
Hydroformylation and oxidation of olefins Textbook H: Chapter 16.6, 17.1 – 17.3 Textbook A: Chapter 16.1 – 16.2, 18.1 – 18.2.
Metal-Mediated Ring Formation The contribution of Paul A. Wender Guillaume Barbe Charette’s Laboratories Université de Montréal October 30 th 2007.
Advances in Metal Mediated Intramolecular Enyne Carbocyclizations Patrick D. Pohlhaus The University of North Carolina at Chapel Hill March 28, 2003.
Carbon Monoxide “Insertion” Siyu Ye The term “insertion” is used to describe the process whereby an unsaturated moiety, which may or may.
1 Year 3 CH3E4 notes: Asymmetric Catalysis, Prof Martin Wills You are aware of the importance of chirality. This course will focus on asymmetric.
Ye Zhu 09/02/10 Burgess’s Group Meeting Chiral Ligands On A Spiro Scaffold for Transition-Metal- Catalyzed Asymmetric Reactions Work by Prof. Zhou Qi-Lin.
1 Chiral Phosphoric Acids-Catalyzed Multi-Component Reactions for Synthesis of Structurally Diverse Nitrogenous Compounds Feng Shi Dec. 18th, 2010.
Ru-Catalyzed C-H Activation Wang cheng ming
Vanadium-Catalyzed Selenide Oxidation with in situ [2,3] Sigmatropic Rearrangement: Scope and Asymmetric Applications Campbell Bourland February 6, 2002.
Supervisor: Yong Huang Reporter: Qian Wang Date: Magical Chiral Spirobiindane Skeletons.
Reactions Involve Sulfur Ylides 陈殿峰 陈殿峰
Asymmetric BINOL-Phosphate Derived Brønsted Acids: Development and Catalytic Mechanism Reporter: Song Feifei Supervisor: Prof. Yong Huang
Rhodium-Catalyzed Chemo- and Regioselective Decarboxylative Addition of β- Ketoacids to Allenes: Efficient Construction of Tertiary and Quaternary Carbons.
Redox Neutral Reactions Wang Chao Redox Economy and Redox Neutral Reactions: Angew. Chem. Int. Ed. 2009, 48, 2854 – 2867.
金属催化的氧化反应 CYP 450TauD Acc. Chem. Res. 2007, 40, 522–531.
Light and Palladium Induced Carbonylation Reactions of Alkyl Iodides Mechanism and Development Pusheng Wang Gong Group Meeting April 12 th 2014.
Organic Pedagogical Electronic Network An Introduction to Catalytic Nitrene C–H Oxidation Ashley M. Adams, Justin Su, And J. Du Bois.
Reporter: Yang Chao Supervisor: Prof. Yong Huang The Transformation of α ‑ Diazocarbonyl Compounds.
Catalytic Synthesis of α,β- Unsaturated Carbonyl Derivatives 陈殿峰
Reporter: Qinglan Liu Supervisor: Prof. Yong Huang
Nicolas Gaeng Group seminar – LSPN – 30/04/15. Structures with multiple rings connected through one atom Nomenclature proposed by Adolf Baeyer in 1900.
Theoretical Study on the Stability of Metallasilabenzyne and Its Isomers Speaker: Xuerui Wang Advisor : Jun Zhu.
Enantioselective Reactions Catalyzed by Iron Complexes Pablo Pérez.
Cinchona Alkaloids : Efficient Bifunctional Organocatalyts in Asymmetric Synthesis Antonin Clemenceau Frontiers in Chemical Synthesis PhD in J. Zhu Group.
Selected examples of Domino Reactions in Total Synthesis Dagoneau Dylan Zhu Group Frontiers in Chemical Synthesis May 22 th, 2014.
Palladium-catalysed reactions involving isocyanides Reporter: Xinzheng Chen Supervisor: Prof. David Zhigang Wang
Photocatalysis based on TiO2
Catalytic Enantioselective Fluorination
University of Wyoming, Senior Honors Project, December 9, 2016
Major developments in Rh-catalyzed asymmetric 1,4-addition of boron species to enone Group Seminar By Raphaël Beltran.
Efficiency in Synthesis
Presented by Arianne Hunter Sharma Lab Literature Meetings
Transition Metal Catalyzed Amide Bond Formation
Superbisor: Yong Huang
Leah G. Dodson, Michael C. Thompson, J. Mathias Weber
Enantioselective Rh-catalyzed Aldehyde C-H Activation
Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems
Mike Mulholland Literature Meeting October 23rd 2012
Copper Hydride Catalyzed Hydroamination of Alkenes and Alkynes
• First practical method for asymmetric hydrocyantion of a 1,3-diene
Copper Catalyzed C-N Bond Formation Using O-Acyl Hydroxylamine
Tunable σ-Accepting, Z-Type Ligands for Organometallic Catalysis
1. Palladium Catalyzed Organic Transformations
Presentation transcript:

Carbon Monoxide “Insertion” Siyu Ye 2008.1.25

The term “insertion” is used to describe the process whereby an unsaturated moiety, which may or may not be coordinated to the metal initially, becomes bonded to the metal and to a saturated ligand (which was initially attached to the metal center). Anderson, G. K.; Cross, R. J. Acc. Chem. Res. 1984,17, 67. 2

Content Introduction Acid Induced Carbonylation Main Group Metal Induced Carbonylation Transition Metal Induced Carbonylation Conclusion Background Methanol Carbonylation Hydroformylation Double Carbonylation 3

Content Introduction Acid Induced Carbonylation Main Group Metal Induced Carbonylation Transition Metal Induced Carbonylation Conclusion Background Methanol Carbonylation Hydroformylation Double Carbonylation 4

The CO Molecule C+O-, electronegativity Molecular Orbital of Carbon Monoxide C+O-, electronegativity C-O+, a low dipole moment of 0.112 D LUMO HOMO Henrici-Olivé, G.; Olivé, S. The Chemistry of the Catalyzed Hydrogenation of Carbon Monoxide; Springer-Verlag: Berlin, Heidelberg, New York, Tokyo, 1984; p 23. 5

Migratory Insertion Which is more appropriate?

alkyl migration CO migration Calderazzo, F. Angew. Chem., Int. Ed. 1977, 16, 299. CO migration Brunner, H.; Vogt, H. Angew. Chem., Int. Ed. 1981, 20, 405. 7

Influence Factors cis-(CO/Me) trans-(P/Me), ligand with a large trans influence θ, angle of L-M-X partial negative charge at alkyl group partial positive charge at CO Cavell, K. J. Coord. Chem. Rev. 1996, 155, 209. 8

Absence of Acyl-to-CO Migration Ni-C (acetyl) bond (184 pm) < Ni-C σ bond (194 pm) Ti-C (acetyl) bond (207 pm) < Ti-C σ bond (214 pm) M-C (acetyl) bond, a partial double bond Henrici-Olivé, G.; Olivé, S. The Chemistry of the Catalyzed Hydrogenation of Carbon Monoxide; Springer-Verlag: Berlin, Heidelberg, New York, Tokyo, 1984; p 79. 9

Content Introduction Acid Induced Carbonylation Main Group Metal Induced Carbonylation Transition Metal Induced Carbonylation Conclusion Background Methanol Carbonylation Hydroformylation Double Carbonylation 10

Acid Induced Carbonylation Koch carbonylation Farcasiu, D.; Schlosberg, R. H. J. Org. Chem. 1982, 47, 151. 11

Content Introduction Acid Induced Carbonylation Main Group Metal Induced Carbonylation Transition Metal Induced Carbonylation Conclusion Background Methanol Carbonylation Hydroformylation Double Carbonylation 12

Li Induced Carbonylation Seyferth, D.; Weinstein, R. M. J. Am. Chem. Soc. 1982, 104, 5534. Song, Q.; Chen, J.; Jin, X.; Xi, Z. J. Am. Chem. Soc. 2001, 123, 10419. 13

Mg Induced Carbonylation Sprangers, W. J. J. M.; Louw, R. J. Chem. Soc., Perkin Trans. 2 1976, 1895. 14

Al Induced Carbonylation Mason, M. R.; Song, B.; Kirschbaum, K. J. Am. Chem. Soc. 2004, 126, 11812. 15

Content Introduction Acid Induced Carbonylation Main Group Metal Induced Carbonylation Transition Metal Induced Carbonylation Conclusion Background Methanol Carbonylation Hydroformylation Double Carbonylation 16

Transition Metal Induced Carbonylation Chiusoli, G. P. Acc. Chem. Res. 1973, 6, 422. 17

Schoenberg, A. ; Bartoletti, I. ; Heck, R. F. J. Org. Chem Heck, R. F. J. Am. Chem. Soc. 1963, 85, 2013. Reppe process 18

CO-to-C—X Insertion Heck, R. F. J. Am. Chem. Soc. 1963, 85, 1460. Wang, M. D.; Alper, H. J. Am. Chem. Soc. 1992, 114, 7018. 19 19

Pauson-Khand Reaction Paquette, L. A.; Borrelly, S. J. Org. Chem. 1995, 60, 6912. Tang, Y.; Deng, L.; Zhang, Y.; Dong, G.; Chen, J.; Yang, Z. Org. Lett. 2005, 7, 1657. 20

Complicated Carbonylation Negishi, E.-I.; Coperet, C.; Ma, S.; Mita, T.; Sugihara, T.; Tour, J. M. J. Am. Chem. Soc. 1996, 118, 5904. Aksin, O.; Dege, N.; Artok, L.; Turkmen, H.; Cetinkaya, B. Chem. Commun. 2006, 3187. 21

Kramer, J. W.; Joh, D. Y.; Coates, G. W. Org. Lett. 2007, 9, 5581. Matsuda, T.; Tsuboi, T.; Murakami, M. J. Am. Chem. Soc. 2007, 129, 12596. Kramer, J. W.; Joh, D. Y.; Coates, G. W. Org. Lett. 2007, 9, 5581. 22

Peng, C.; Cheng, J.; Wang, J. J. Am. Chem. Soc. 2007, 129, 8708. Wang, Y.; Wang, J.; Su, J.; Huang, F.; Jiao, L.; Liang, Y.; Yang, D.; Zhang, S.; Wender, P. A.; Yu, Z.-X. J. Am. Chem. Soc. 2007, 129, 10060.  

Content Introduction Acid Induced Carbonylation Main Group Metal Induced Carbonylation Transition Metal Induced Carbonylation Conclusion Background Methanol Carbonylation Hydroformylation Double Carbonylation 24

Methanol Carbonylation Monsanto process Forster, D. J. Am. Chem. Soc. 1976, 98, 846. 25

26 殷元骐 主编,《羰基合成化学》, p 167.

Hydroformylation typical condition: 110~180 ℃, 20~35 MPa double bond isomerization, 110 ℃, p(CO) = 9.0 MPa, 1-pentene vs. 2-pentene, the same n/iso ratio 100 ℃, p(CO) from 0.25 MPa to 9.0 MPa, n/iso from 1.6 to 4.4 high p(CO), high p(H2) 殷元骐 主编,《羰基合成化学》, p 4. 27

Couthino, K. J. et. al. J. Chem. Soc., Dalton Trans. 1997, 3193. Jackson, W. R.; Perlmutter, P.; Suh, G.-H. J. Chem. Soc., Chem. Commun. 1987, 40, 129. Couthino, K. J. et. al. J. Chem. Soc., Dalton Trans. 1997, 3193. TPPTS = P(m-C6H4SO3Na)3 Nair, V. S. et. al. Rec. Adv. Basic Appl. Aspects Industr. Catal. 1998, 113, 529. Smith, W. E. et. al. In Catalysis of Organic Reactions; Augustine, R. L., Ed.; Dekker: New York, 1985; p 151. 28

Kranemann, C. L.; Eilbracht, P. Synthesis 1998, 71. Roggenbuck, R.; Eilbracht, P. Tetrahedron Lett. 1999, 40, 7455. 29

Asymmetric Hydroformylation Difficulties : 1. High regioselectivity 2. High enantioselectivity 3. No racemization of aldehyde Sakai, N.; Mano, S.; Nozaki, K.; Takaya, H. J. Am. Chem. Soc. 1993, 115, 7033. Breit, B. Acc. Chem. Res. 2003, 36, 264. 30

Diastereoselective Hydroformylation Breit, B. Angew. Chem., Int. Ed. 1996, 35, 2835. Breit, B.; Zahn, S. K. Angew. Chem., Int. Ed. 1999, 38, 969. 31

Double Carbonylation (Rhone-Poulenc Company) 殷元骐 主编,《羰基合成化学》 32

Cassar, L. Ann. N. Y. Acad. Sci. 1980, 208, 333. Alper, H. Adv. Organomet. Chem. 1981, 19, 183.

Kobayashi, T.; Tanaka, M. J. Organomet. Chem. 1982, 233, C64. Ozawa, F.; Soyma, H.; Yamamoto, T.; Yamamoto, A. Tetrahedron Lett. 1982, 23, 3383. Ozawa, F.; Sugimoto, T.; Yuasa, Y.; Santra, M.; Yamamoto, T.; Yamamoto, A. Organometallics 1984, 3, 683. 34

Francalanci, F. ; Bencini, E. ; Gardano, A. ; Vincenti, M. ; Foà, M. J Francalanci, F. ; Bencini, E.; Gardano, A.; Vincenti, M.; Foà, M. J. Organomet. Chem. 1986, 301, C27.

Content Introduction Acid Induced Carbonylation Main Group Metal Induced Carbonylation Transition Metal Induced Carbonylation Conclusion Background Methanol Carbonylation Hydroformylation Double Carbonylation 36

Conclusion Atom economical Variety, wide application in industry and lab synthesis Ni, Pd, Pt, Co, Rh catalysts, etc Various influencing factors: substrate, catalyst, solvent, pressure, temperature, additive, etc 37

Thanks for my group members. Acknowledgment Thanks for Prof. Yu. Thanks for my group members. Thanks for all the teachers and the students. 38

Note 39

40

41

42