Carbon Monoxide “Insertion” Siyu Ye 2008.1.25
The term “insertion” is used to describe the process whereby an unsaturated moiety, which may or may not be coordinated to the metal initially, becomes bonded to the metal and to a saturated ligand (which was initially attached to the metal center). Anderson, G. K.; Cross, R. J. Acc. Chem. Res. 1984,17, 67. 2
Content Introduction Acid Induced Carbonylation Main Group Metal Induced Carbonylation Transition Metal Induced Carbonylation Conclusion Background Methanol Carbonylation Hydroformylation Double Carbonylation 3
Content Introduction Acid Induced Carbonylation Main Group Metal Induced Carbonylation Transition Metal Induced Carbonylation Conclusion Background Methanol Carbonylation Hydroformylation Double Carbonylation 4
The CO Molecule C+O-, electronegativity Molecular Orbital of Carbon Monoxide C+O-, electronegativity C-O+, a low dipole moment of 0.112 D LUMO HOMO Henrici-Olivé, G.; Olivé, S. The Chemistry of the Catalyzed Hydrogenation of Carbon Monoxide; Springer-Verlag: Berlin, Heidelberg, New York, Tokyo, 1984; p 23. 5
Migratory Insertion Which is more appropriate?
alkyl migration CO migration Calderazzo, F. Angew. Chem., Int. Ed. 1977, 16, 299. CO migration Brunner, H.; Vogt, H. Angew. Chem., Int. Ed. 1981, 20, 405. 7
Influence Factors cis-(CO/Me) trans-(P/Me), ligand with a large trans influence θ, angle of L-M-X partial negative charge at alkyl group partial positive charge at CO Cavell, K. J. Coord. Chem. Rev. 1996, 155, 209. 8
Absence of Acyl-to-CO Migration Ni-C (acetyl) bond (184 pm) < Ni-C σ bond (194 pm) Ti-C (acetyl) bond (207 pm) < Ti-C σ bond (214 pm) M-C (acetyl) bond, a partial double bond Henrici-Olivé, G.; Olivé, S. The Chemistry of the Catalyzed Hydrogenation of Carbon Monoxide; Springer-Verlag: Berlin, Heidelberg, New York, Tokyo, 1984; p 79. 9
Content Introduction Acid Induced Carbonylation Main Group Metal Induced Carbonylation Transition Metal Induced Carbonylation Conclusion Background Methanol Carbonylation Hydroformylation Double Carbonylation 10
Acid Induced Carbonylation Koch carbonylation Farcasiu, D.; Schlosberg, R. H. J. Org. Chem. 1982, 47, 151. 11
Content Introduction Acid Induced Carbonylation Main Group Metal Induced Carbonylation Transition Metal Induced Carbonylation Conclusion Background Methanol Carbonylation Hydroformylation Double Carbonylation 12
Li Induced Carbonylation Seyferth, D.; Weinstein, R. M. J. Am. Chem. Soc. 1982, 104, 5534. Song, Q.; Chen, J.; Jin, X.; Xi, Z. J. Am. Chem. Soc. 2001, 123, 10419. 13
Mg Induced Carbonylation Sprangers, W. J. J. M.; Louw, R. J. Chem. Soc., Perkin Trans. 2 1976, 1895. 14
Al Induced Carbonylation Mason, M. R.; Song, B.; Kirschbaum, K. J. Am. Chem. Soc. 2004, 126, 11812. 15
Content Introduction Acid Induced Carbonylation Main Group Metal Induced Carbonylation Transition Metal Induced Carbonylation Conclusion Background Methanol Carbonylation Hydroformylation Double Carbonylation 16
Transition Metal Induced Carbonylation Chiusoli, G. P. Acc. Chem. Res. 1973, 6, 422. 17
Schoenberg, A. ; Bartoletti, I. ; Heck, R. F. J. Org. Chem Heck, R. F. J. Am. Chem. Soc. 1963, 85, 2013. Reppe process 18
CO-to-C—X Insertion Heck, R. F. J. Am. Chem. Soc. 1963, 85, 1460. Wang, M. D.; Alper, H. J. Am. Chem. Soc. 1992, 114, 7018. 19 19
Pauson-Khand Reaction Paquette, L. A.; Borrelly, S. J. Org. Chem. 1995, 60, 6912. Tang, Y.; Deng, L.; Zhang, Y.; Dong, G.; Chen, J.; Yang, Z. Org. Lett. 2005, 7, 1657. 20
Complicated Carbonylation Negishi, E.-I.; Coperet, C.; Ma, S.; Mita, T.; Sugihara, T.; Tour, J. M. J. Am. Chem. Soc. 1996, 118, 5904. Aksin, O.; Dege, N.; Artok, L.; Turkmen, H.; Cetinkaya, B. Chem. Commun. 2006, 3187. 21
Kramer, J. W.; Joh, D. Y.; Coates, G. W. Org. Lett. 2007, 9, 5581. Matsuda, T.; Tsuboi, T.; Murakami, M. J. Am. Chem. Soc. 2007, 129, 12596. Kramer, J. W.; Joh, D. Y.; Coates, G. W. Org. Lett. 2007, 9, 5581. 22
Peng, C.; Cheng, J.; Wang, J. J. Am. Chem. Soc. 2007, 129, 8708. Wang, Y.; Wang, J.; Su, J.; Huang, F.; Jiao, L.; Liang, Y.; Yang, D.; Zhang, S.; Wender, P. A.; Yu, Z.-X. J. Am. Chem. Soc. 2007, 129, 10060.
Content Introduction Acid Induced Carbonylation Main Group Metal Induced Carbonylation Transition Metal Induced Carbonylation Conclusion Background Methanol Carbonylation Hydroformylation Double Carbonylation 24
Methanol Carbonylation Monsanto process Forster, D. J. Am. Chem. Soc. 1976, 98, 846. 25
26 殷元骐 主编,《羰基合成化学》, p 167.
Hydroformylation typical condition: 110~180 ℃, 20~35 MPa double bond isomerization, 110 ℃, p(CO) = 9.0 MPa, 1-pentene vs. 2-pentene, the same n/iso ratio 100 ℃, p(CO) from 0.25 MPa to 9.0 MPa, n/iso from 1.6 to 4.4 high p(CO), high p(H2) 殷元骐 主编,《羰基合成化学》, p 4. 27
Couthino, K. J. et. al. J. Chem. Soc., Dalton Trans. 1997, 3193. Jackson, W. R.; Perlmutter, P.; Suh, G.-H. J. Chem. Soc., Chem. Commun. 1987, 40, 129. Couthino, K. J. et. al. J. Chem. Soc., Dalton Trans. 1997, 3193. TPPTS = P(m-C6H4SO3Na)3 Nair, V. S. et. al. Rec. Adv. Basic Appl. Aspects Industr. Catal. 1998, 113, 529. Smith, W. E. et. al. In Catalysis of Organic Reactions; Augustine, R. L., Ed.; Dekker: New York, 1985; p 151. 28
Kranemann, C. L.; Eilbracht, P. Synthesis 1998, 71. Roggenbuck, R.; Eilbracht, P. Tetrahedron Lett. 1999, 40, 7455. 29
Asymmetric Hydroformylation Difficulties : 1. High regioselectivity 2. High enantioselectivity 3. No racemization of aldehyde Sakai, N.; Mano, S.; Nozaki, K.; Takaya, H. J. Am. Chem. Soc. 1993, 115, 7033. Breit, B. Acc. Chem. Res. 2003, 36, 264. 30
Diastereoselective Hydroformylation Breit, B. Angew. Chem., Int. Ed. 1996, 35, 2835. Breit, B.; Zahn, S. K. Angew. Chem., Int. Ed. 1999, 38, 969. 31
Double Carbonylation (Rhone-Poulenc Company) 殷元骐 主编,《羰基合成化学》 32
Cassar, L. Ann. N. Y. Acad. Sci. 1980, 208, 333. Alper, H. Adv. Organomet. Chem. 1981, 19, 183.
Kobayashi, T.; Tanaka, M. J. Organomet. Chem. 1982, 233, C64. Ozawa, F.; Soyma, H.; Yamamoto, T.; Yamamoto, A. Tetrahedron Lett. 1982, 23, 3383. Ozawa, F.; Sugimoto, T.; Yuasa, Y.; Santra, M.; Yamamoto, T.; Yamamoto, A. Organometallics 1984, 3, 683. 34
Francalanci, F. ; Bencini, E. ; Gardano, A. ; Vincenti, M. ; Foà, M. J Francalanci, F. ; Bencini, E.; Gardano, A.; Vincenti, M.; Foà, M. J. Organomet. Chem. 1986, 301, C27.
Content Introduction Acid Induced Carbonylation Main Group Metal Induced Carbonylation Transition Metal Induced Carbonylation Conclusion Background Methanol Carbonylation Hydroformylation Double Carbonylation 36
Conclusion Atom economical Variety, wide application in industry and lab synthesis Ni, Pd, Pt, Co, Rh catalysts, etc Various influencing factors: substrate, catalyst, solvent, pressure, temperature, additive, etc 37
Thanks for my group members. Acknowledgment Thanks for Prof. Yu. Thanks for my group members. Thanks for all the teachers and the students. 38
Note 39
40
41
42