Side-Chain Conformational Thermodynamics of Aspartic Acid Residue in the Peptides and Achatin-I in Aqueous Solution  Tomohiro Kimura, Nobuyuki Matubayasi,

Slides:



Advertisements
Similar presentations
19.3 Formation of Peptides A peptide bond is an amide bond that forms when the — COO− group of one amino acid reacts with the — NH3+ group of the next.
Advertisements

Willem K. Kegel, Paul van der Schoot  Biophysical Journal 
Eric M. Jones, Thomas C. Squier, Colette A. Sacksteder 
Volume 91, Issue 12, Pages (December 2006)
Philippe Derreumaux, Tamar Schlick  Biophysical Journal 
T.P. Galbraith, R. Harris, P.C. Driscoll, B.A. Wallace 
Label the functional groups and the bonds in Fig.1.
A Vibrational Spectral Maker for Probing the Hydrogen-Bonding Status of Protonated Asp and Glu Residues  Beining Nie, Jerrod Stutzman, Aihua Xie  Biophysical.
Volume 84, Issue 6, Pages (June 2003)
Pedro R. Magalhães, Miguel Machuqueiro, António M. Baptista 
Volume 86, Issue 5, Pages (May 2004)
Olivier Fisette, Stéphane Gagné, Patrick Lagüe  Biophysical Journal 
Molecular Orientation and Conformation of Phosphatidylinositides in Membrane Mimetics Using Variable Angle Sample Spinning (VASS) NMR  Anita I. Kishore,
Volume 83, Issue 3, Pages (September 2002)
Ching-Hsing Yu, Samuel Cukierman, Régis Pomès  Biophysical Journal 
Β-Hairpin Folding Mechanism of a Nine-Residue Peptide Revealed from Molecular Dynamics Simulations in Explicit Water  Xiongwu Wu, Bernard R. Brooks  Biophysical.
Volume 109, Issue 11, Pages (December 2015)
Molecular Dynamics Free Energy Calculations to Assess the Possibility of Water Existence in Protein Nonpolar Cavities  Masataka Oikawa, Yoshiteru Yonetani 
Volume 93, Issue 10, Pages (November 2007)
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Volume 87, Issue 1, Pages (July 2004)
Worked Example Determining Side-Chain Hydrophobicity/ Hydrophilicity
Tae-Joon Park, Ji-Sun Kim, Hee-Chul Ahn, Yongae Kim 
Volume 108, Issue 6, Pages (March 2015)
Predicting the Signaling State of Photoactive Yellow Protein
Liqun Zhang, Susmita Borthakur, Matthias Buck  Biophysical Journal 
Volume 99, Issue 10, Pages (November 2010)
Volume 109, Issue 5, Pages (September 2015)
Nadine Keller, Jiří Mareš, Oliver Zerbe, Markus G. Grütter  Structure 
Influence of Protein Scaffold on Side-Chain Transfer Free Energies
Interactions between Charged Polypeptides and Nonionic Surfactants
Volume 83, Issue 2, Pages (August 2002)
Volume 105, Issue 3, Pages (August 2013)
Volume 93, Issue 2, Pages (July 2007)
Volume 98, Issue 8, Pages (April 2010)
Volume 82, Issue 2, Pages (February 2002)
Mechanistic Studies on ADAMTS13 Catalysis
Volume 89, Issue 3, Pages (September 2005)
Volume 20, Issue 12, Pages (December 2012)
Volume 84, Issue 6, Pages (June 2003)
Calculating the Free Energy of Association of Transmembrane Helices
Thermodynamic Description of Polymorphism in Q- and N-Rich Peptide Aggregates Revealed by Atomistic Simulation  Joshua T. Berryman, Sheena E. Radford,
Volume 89, Issue 4, Pages (October 2005)
Volume 103, Issue 8, Pages (October 2012)
Simone Furini, Carmen Domene  Biophysical Journal 
Interaction of Verapamil with Lipid Membranes and P-Glycoprotein: Connecting Thermodynamics and Membrane Structure with Functional Activity  M. Meier,
Osteogenesis Imperfecta Model Peptides: Incorporation of Residues Replacing Gly within a Triple Helix Achieved by Renucleation and Local Flexibility 
Structure and Topology of the Huntingtin 1–17 Membrane Anchor by a Combined Solution and Solid-State NMR Approach  Matthias Michalek, Evgeniy S. Salnikov,
Molecular Interactions of Alzheimer's Biomarker FDDNP with Aβ Peptide
Sequence and Crowding Effects in the Aggregation of a 10-Residue Fragment Derived from Islet Amyloid Polypeptide  Eva Rivera, John Straub, D. Thirumalai 
Yuguang Mu, Lars Nordenskiöld, James P. Tam  Biophysical Journal 
Congju Chen, Irina M. Russu  Biophysical Journal 
Volume 83, Issue 3, Pages (September 2002)
Volume 111, Issue 1, Pages (July 2016)
Alice Qinhua Zhou, Diego Caballero, Corey S. O’Hern, Lynne Regan 
Volume 99, Issue 1, Pages (July 2010)
Feng Ding, Sergey V. Buldyrev, Nikolay V. Dokholyan 
Feng Ding, Douglas Tsao, Huifen Nie, Nikolay V. Dokholyan  Structure 
The Relation between α-Helical Conformation and Amyloidogenicity
Volume 95, Issue 7, Pages (October 2008)
Volume 102, Issue 1, Pages (January 2012)
Mechanism of Interaction between the General Anesthetic Halothane and a Model Ion Channel Protein, III: Molecular Dynamics Simulation Incorporating a.
Volume 84, Issue 4, Pages (April 2003)
Insights from Free-Energy Calculations: Protein Conformational Equilibrium, Driving Forces, and Ligand-Binding Modes  Yu-ming M. Huang, Wei Chen, Michael J.
Atomic Detail Peptide-Membrane Interactions: Molecular Dynamics Simulation of Gramicidin S in a DMPC Bilayer  Dan Mihailescu, Jeremy C. Smith  Biophysical.
T.P. Galbraith, R. Harris, P.C. Driscoll, B.A. Wallace 
A Delocalized Proton-Binding Site within a Membrane Protein
Volume 106, Issue 8, Pages (April 2014)
Volume 98, Issue 4, Pages (February 2010)
Volume 86, Issue 6, Pages (June 2004)
Presentation transcript:

Side-Chain Conformational Thermodynamics of Aspartic Acid Residue in the Peptides and Achatin-I in Aqueous Solution  Tomohiro Kimura, Nobuyuki Matubayasi, Masaru Nakahara  Biophysical Journal  Volume 86, Issue 2, Pages 1124-1137 (February 2004) DOI: 10.1016/S0006-3495(04)74187-9 Copyright © 2004 The Biophysical Society Terms and Conditions

Figure 1 (a) Molecular structures of Asp tripeptide (A) at the acidic pD, (N) at the neutral pD, and (B) at the basic pD. The arrows represent the dihedral angles analyzed. (b) Staggered side-chain conformers of Asp with respect to the dihedral angles analyzed. C represents the β-carboxyl carbon in the side chain. N represents the α-amino nitrogen or α-amide nitrogen in the peptide bond, and C represents the α-carboxyl carbon or α-carbonyl carbon in the peptide bond. Biophysical Journal 2004 86, 1124-1137DOI: (10.1016/S0006-3495(04)74187-9) Copyright © 2004 The Biophysical Society Terms and Conditions

Figure 2 1H NMR spectrum of (a) 10mM Asp tripeptide aqueous solution observed on a 270-MHz spectrometer and (b) 5mM Asp tetrapeptide aqueous solution observed on a 600-MHz spectrometer at 30°C (A) at the acidic pD, (N) at the neutral pD, and (B) at the basic pD. The 5-line signals with asterisks for the tripeptide correspond to the C-terminal protons. Biophysical Journal 2004 86, 1124-1137DOI: (10.1016/S0006-3495(04)74187-9) Copyright © 2004 The Biophysical Society Terms and Conditions

Figure 3 Probabilities (P) of side-chain conformers T, G+, and G− in Fig. 1 b for the Asp amino acid monomer and peptides (di-, tri-, and tetrapeptides) (A) at the acidic pD, (N) at the neutral pD, and (B) at the basic pD. Biophysical Journal 2004 86, 1124-1137DOI: (10.1016/S0006-3495(04)74187-9) Copyright © 2004 The Biophysical Society Terms and Conditions

Figure 4 Conformational energy changes ΔEgas0 (kJ mol−1) in the gas phase calculated by the MM2 for the trans-to-gauche transformation with respect to a pair of vicinal functional groups involved in Asp residues in peptides. One α-functional group was replaced by a hydrogen atom in the calculations as shown in the parentheses. In the cases where the α-amide group of a peptide bond is involved as for 2 and 4, not only the minimum but also the maximum values of ΔEgas0 due to the variation of the orientation of this group are shown. Biophysical Journal 2004 86, 1124-1137DOI: (10.1016/S0006-3495(04)74187-9) Copyright © 2004 The Biophysical Society Terms and Conditions

Figure 5 Sequence-position dependence of the conformational energy changes ΔEgas0 (kJ mol−1) in the gas phase. Biophysical Journal 2004 86, 1124-1137DOI: (10.1016/S0006-3495(04)74187-9) Copyright © 2004 The Biophysical Society Terms and Conditions

Figure 6 ln K against 1/T for the Asp side-chain conformational equilibria in Asp dipeptide. K=P(x)/P(T) is the equilibrium constant, where P(T) is the probability of conformer T, and P(x) is the probability of conformer G+ or G−. T is the absolute temperature. (a) At the acidic pD of 0.6 and (b) at the neutral pD of 7.4. Biophysical Journal 2004 86, 1124-1137DOI: (10.1016/S0006-3495(04)74187-9) Copyright © 2004 The Biophysical Society Terms and Conditions

Figure 7 Side-chain conformational changes in the standard free energy ΔG0, enthalpy ΔH0, and entropy −TΔS0 (kJ mol−1) from T to G+ or G− in Fig. 1 b of Asp amino acid monomer, di-, tri-, and tetrapeptides (A) at the acidic pD and (N) at the neutral pD. Biophysical Journal 2004 86, 1124-1137DOI: (10.1016/S0006-3495(04)74187-9) Copyright © 2004 The Biophysical Society Terms and Conditions

Figure 8 1H NMR spectrum of 2mM achatin-I (Gly-D-Phe-Ala-Asp) aqueous solution at 30°C (A) at the acidic pD of 0.7, (N) at the neutral pD of 7.5, and (B) at the basic pD of 13.8. Biophysical Journal 2004 86, 1124-1137DOI: (10.1016/S0006-3495(04)74187-9) Copyright © 2004 The Biophysical Society Terms and Conditions

Figure 9 Probabilities (P) of side-chain conformers T, G+, and G− in Fig. 1 b for the C-terminal Asp in achatin-I, (A) at the acidic pD, (N) at the neutral pD, and (B) at the basic pD. Biophysical Journal 2004 86, 1124-1137DOI: (10.1016/S0006-3495(04)74187-9) Copyright © 2004 The Biophysical Society Terms and Conditions

Figure 10 ln K against 1/T for the C-terminal Asp in achatin-I at the neutral pD. Biophysical Journal 2004 86, 1124-1137DOI: (10.1016/S0006-3495(04)74187-9) Copyright © 2004 The Biophysical Society Terms and Conditions