NEUTRINO INTERACTION WITH NUCLEI

Slides:



Advertisements
Similar presentations
Modern Theory of Nuclear Structure, Exotic Excitations and Neutrino-Nucleus Reactions N. Paar Physics Department Faculty of Science University of Zagreb.
Advertisements

Kerstin Sonnabend, IKP, TU Darmstadt S-DALINAC - Nuclear Astrophysics Nuclear Astrophysics at the Darmstadt superconducting electron linear accelerator.
HIGS2 Workshop June 3-4, 2013 Nuclear Structure Studies at HI  S Henry R. Weller The HI  S Nuclear Physics Program.
Photo-Nuclear Physics Experiments by using an Intense Photon Beam Toshiyuki Shizuma Gamma-ray Nondestructive Detection Research Group Japan Atomic Energy.
Invariant-mass spectroscopy of neutron halo nuclei Takashi Nakamura 中村隆司 Tokyo Institute of Technology 東京工業大学 中日 NP 06, Shanghai.
Neutrino-nucleus  : Measurements vs. calculations Petr Vogel, Caltech Oak Ridge, Aug , 2003 Outline: a) review of known weak processes b) successes.
CMD-2 and SND results on the  and  International Workshop «e+e- Collisions from  to  » February 27 – March 2, 2006, BINP, Novosibirsk, Russia.
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
Coupled-Channel Computation of Direct Neutron Capture and (d,p) reactions on Non- Spherical Nuclei Goran Arbanas (ORNL) Ian J. Thompson (LLNL) with Filomena.
Spin-isospin studies with the SHARAQ Spectrometer Tomohiro Uesaka & Y. Sasamoto, K. Miki, S. Noji University of Tokyo for the SHARAQ collaboration Aizu2010.
The structure of giant resonances in calcium and titanium isotopes. N.G.Goncharova, Iu.A.Skorodumina Skobelzyn Institute of Nuclear Physics, Moscow State.
LENS-CAL I. Barabanov, V. Gurentsov, V. Kornoukhov Institute for Nuclear Research, Moscow and R. S. Raghavan, Virginia Tech LONU-LENS Blacksburg, Oct 15,
1 New horizons for MCAS: heavier masses and α-particle scattering Juris P. Svenne, University of Manitoba, and collaborators CAP 15/6/2015.
Photonuclear reactions in astrophysics
-NUCLEUS INTERACTIONS OPEN QUESTIONS and FUTURE PROJECTS Cristina VOLPE Institut de Physique Nucléaire Orsay, France.
Dott. Antonio Botrugno Ph.D. course UNIVERSITY OF LECCE (ITALY) DEPARTMENT OF PHYSICS.
Masatoshi Koshiba Raymond Davis Jr. The Nobel Prize in Physics 2002 "for pioneering contributions to astrophysics, in particular for the detection of cosmic.
NS08 MSU, June 3rd – 6th 2008 Elisa Rapisarda Università degli studi di Catania E.Rapisarda 18 2.
July 29-30, 2010, Dresden 1 Forbidden Beta Transitions in Neutrinoless Double Beta Decay Kazuo Muto Department of Physics, Tokyo Institute of Technology.
LOMONOSOV MOSCOW STATE UNIVERSITY, SKOBELTSYN INSTITUTE OF NUCLEAR PHYSICS Multi-particle photodisintegration of heavy nuclei A.N. Ermakov, B.S. Ishkhanov,
P Spring 2002 L18Richard Kass The Solar Neutrino Problem M&S Since 1968 R.Davis and collaborators have been measuring the cross section of:
Cristina VOLPE BETA-BEAMS The beta-beam concept The baseline scenario The physics potential Conclusions LOW ENERGY BETA-BEAMS A N D The idea Motivation.
News from the Sudbury Neutrino Observatory Simon JM Peeters July 2007 o SNO overview o Results phases I & II o hep neutrinos and DSNB o Update on the III.
Few-Body Models of Light Nuclei The 8th APCTP-BLTP JINR Joint Workshop June 29 – July 4, 2014, Jeju, Korea S. N. Ershov.
1 Cross sections of neutron reactions in S-Cl-Ar region in the s-process of nucleosynthesis C. Oprea 1, P. J. Szalanski 2, A. Ioan 1, P. M. Potlog 3 1Frank.
Hypernuclear Spectroscopy with Electron Beams
6-quark state nucleon (dibaryon) D N N G~ MeV
K-x-ray Emission in Fast O5+ on Ar Collisions
COLLABORATORS: S.J. Freeman, B.P. Kay,
Tutor: Prof. Yang Sun (孙扬 教授)
Jun Kameda (ICRR) RCCN International workshop at Kashiwa (Dec.10,2004)
2-8 July 2017 KBR, Terskol (BNO); KChR, Nizhnij Arkhyz (SAO)
Possible Ambiguities of Neutrino-Nucleus
Andrea Chiavassa Universita` degli Studi di Torino
Ch. Stoyanov Two-Phonon Mixed-Symmetry States in the Domain N=52
Resonances in the 12C(α,γ)16O reaction
Yuliya Aksyutina for the LAND-R3B collaboration Motivation
International School of Nuclear Physics 39th Course, Erice-Sicily, Sep
L. Acosta1, M. A. G. Álvarez2, M. V. Andrés2, C. Angulo3, M. J. G
Giant Monopole Resonance
NUCLEOSYTHESIS OF HEAVY ELEMENTS IN THERMONUCLEAR EXPLOSIONS “Mike”, “Par” and “Barbel” Yu. S. Lutostansky, V. I. Lyashuk. National Research.
Radiative Corrections to Neutrino-Deuteron Scattering Revisited
gamma-transmission coefficients are most uncertain values !!!
Self-consistent theory of stellar electron capture rates
Novel technique for constraining r-process (n,γ) reaction rates.
Section VI - Weak Interactions
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
Neutron Detection with MoNA LISA
Hiroshi MASUI Kitami Institute of Technology
Review: Prospects of detection of relic antineutrinos by resonant absorption in electron capturing nuclei. J D Vergados & Yu N Novikov, J. Phys. G: Nucl.
In search of K+K- molecule
Paper by K. W. Brown et al. , Phys Rev Lett (2014) Talk by Walter W
Study of Strange Quark in the Nucleon with Neutrino Scattering
Nuclear excitations in relativistic nuclear models
Search for f-N Bound State in Jefferson Lab Hall-B
Myung-Ki Cheoun Soongsil University, Seoul, Korea
Experimental determination of isospin mixing in nuclear states;
Motivation: haloes & structure N~14-16 S2n, sR, momentum distributions
Neutrino-Nucleus Reactions and Nucleosynthesis
Val Kostroun and Bruce Dunham
Elastic alpha scattering experiments
Institut de Physique Nucléaire Orsay, France
New Transuranium Isotopes in Multinucleon Transfer Reactions
Kazuo MUTO Tokyo Institute of Technology
I. Structure of the Atom Chemical Symbols Subatomic Particles
Some Nuclear Physics with Solar Neutrinos
Example Example 1: The atom of an element has a mass number of 214 and an atomic number of 82. a) How many protons and neutrons does it have? The number.
Catalin Borcea IFIN-HH INPC 2019, Glasgow, United Kingdom
Magnetic dipole excitation and its sum rule for valence nucleon pair
Change of 7Be decay rate under compression
Presentation transcript:

NEUTRINO INTERACTION WITH NUCLEI S.V. Semenov National Research Centre "Kurchatov Institute“ II International Workshop “SN 1987A, Quark Phase Transition in Compact Objects and Multimessenger Astronomy" BNO and SAO

Neutral current interaction Astrophysical applications: Charged current interaction Neutral current interaction Astrophysical applications: R – processes during nucleosynthesis Synthesis of number of elements - 10,11В, 19F during SN explosion Detection of SN neutrino

ne interactions in LSD detector ne + 12C 12Ngs + e- CC ne + 12C  12N* + e- CC ne + 12C  12C*(15.1 MeV) + ne’ NC ne + 56Fe  56Co* + e- CC ne + 56Fe  56Fe* + ne’ NC

V.S. Imshennik and O.G. Ryazhskaya, Astron. Lett. V.30, P.14 (2004) Reliable calculations of cross sections are of great significance

The problem of nuclear matrix elements calculation Experimental data are necessary for the test of NME calculation methods Till now two experiments have been performed, where direct measurements of neutrino-nuclei reaction cross section had been carried out.

KARMEN μ DAR B. Zenitz, Progr. Part. Nucl. Phys. , V. 32, P KARMEN μ DAR B. Zenitz, Progr. Part. Nucl. Phys., V.32, P.351 (1994); Phys. Lett. B, v. 267, p. 321 (1991); v. 423, p.15 (1998) LSND μ DAR and DIF D.A. Krakauer et al, Phys. Rev. C v.45, p. 2450 (1992) LSND Collab., Nucl. Phys. A, v. 629, p. 531c (1998) Experiments have been accomplished with 12C и 56Fe

+, + DAR, Decay At Rest: + + + , =26 нс, 29. 8 МэВ =2.2мкс,

Spectra of and neutrino, + DAR

Interaction of ne, with 12C KARMEN Collaboration, Phys. Lett. B 267, 321 (1991) First observation of the neutral current nuclear excitation 12C(,’) 12C(1+,1;15.1 MeV) KARMEN Collaboration, Phys. Lett. B 332, 251 (1994)

Interaction of n с 12C KARMEN Collaboration, Phys. Lett. B 423, 15 (1998) Measurement of the weak neutral current excitation NC=(3.20.5)·10-42 см2

Interaction of ne with 56Fe R. MASCHUW for the KARMEN Collaboration, Progr. Part. Nucl. Phys., 40, 183 (1998) Neutrino Spectroscopy with KARMEN СС ne + 56Fe  56Co* + e- <(56Fe(e,e-)56Co)>=[2.51 0.83(stat)0.42(syst)]·10-42 cм2 NC ne + 56Fe  56Fe* + ne’ <(56Fe(e,e’)56Fe*)>=?

 Charged channel Neutral channel Yu.V. Gaponov, O.G. Ryazhsksya, S.V. Semenov, Physics of Atomic Nuclei, 67,1969 (2004) Neutral channel  O.G. Ryazhskaya, S.V. Semenov, Int. Workshop, “Quark Phase Transitions in Compact Objects and Multimessenger Astronomy”, SAO and BNO, 2015, p.105

Charged channel Neutral channel

Interaction cross section Charged channel Excitation of analog 0+ (АR ) и Gamov-Teller 1+ (GТR) gigantic resonances in 56Со

gA=1.27 - Energy difference between initial and final nuclear states For the from ground state transitions

Determination of from the experimental data on the strength distribution of the dipole M1 transitions in 56Fe nucleus

Ex, кэВ J=1+ , мэВ B(M1) T.Shizuma, T. Hayakawa, H. Ohgaki et al, Dipole strength distribution in 56Fe Phys. Rev. C, 87, 024301 (2013) Ex, кэВ J=1+ , мэВ B(M1) 3448.6 7166 7211.1 7249.4 7467.6 7887.6 8119.6 8652.5 8879.3 8908.9 8963.6 8988.9 9107.8 9312.2 9402.0 9434.9 9554.8 9622.9 9664.7 9768.2 78 175 614 219 260 396 391 403 402 647 454 639 838 869 1305 313 680 473 429 336 0.49 0.124 0.425 0.149 0.162 0.210 0.190, 0.24, 0.164 0.229 0.288 0.280 0.408 0.097 0.203 0.138 0.123 0.094

T. Shizuma, T. Hayakawa, H. Ohgaki et al, Fine structure of the magnetic-dipole-strength distribution in 208Pb Phys. Rev. C 78, 061303(R) (2008) Ex, кэВ J=1+ , мэВ B(M1) 5844.63 7178.1 7209.5 7246.4 7280.6 7299.8 7322.3 7346.8 1500 1400 2200 3200 2800 1000 2500 510 2 0.97 1.5 2.2 1.9 0.68 1.6 0.38

Kohler R., Wartena J.A., Weigmann H. et al. // Phys. Rev. C. 1987. V. 35. P. 1646. By the examination of resonance structure of 207Pb + n system the total magnetic dipole strength in the energy domain beyond the neutron separation energy up to 8.7 MeV have been determined, which equals

+ DAR neutrino spectrum 12C KARMEN experiment 56Fe 208Pb S.V. Semenov, Bulletin of Russian Academy of Sciences, Physics, Vol. 81, p. 810

Conclusion Cross section of neutrino-nuclei neutral current interaction comprises a noticeable part of total cross section. It is necessary totake into account these processes by the consideration of primary nucleosynthesis and for the theory of neutrino detectors development. The investigation of nuclear resonance fluorescence gives the possibility to determine nuclear matrix elements, necessary for cross section calculations. The use of neutron rich nuclei is an essential element of effective neutrino detectors construction

Работа поддержана грантами РФФИ офи-м - 14-22-03037, 14-22-03040 Спасибо за внимание!