Pharmacodynamic response modelling of arterial blood pressure in adult volunteers during propofol anaesthesia  C. Jeleazcov, M. Lavielle, J. Schüttler,

Slides:



Advertisements
Similar presentations
S. Arenas-Lopez, H. Mulla, S. Manna, A. Durward, I. A. Murdoch, S. M
Advertisements

F. Ravenelle, P. Vachon, A. E. Rigby-Jones, J. R. Sneyd, D
Comparison of continuous non-invasive finger arterial pressure monitoring with conventional intermittent automated arm arterial pressure measurement in.
Predictive performance of eleven pharmacokinetic models for propofol infusion in children for long-duration anaesthesia  M Hara, K Masui, D.J. Eleveld,
Pharmacokinetic parameter sets of alfentanil revisited: optimal parameters for use in target controlled infusion and anaesthesia display systems  N Sigmond,
Precision and accuracy of a new device (CNAP™) for continuous non-invasive arterial pressure monitoring: assessment during general anaesthesia  C Jeleazcov,
Intravenous lidocaine infusion reduces bispectral index-guided requirements of propofol only during surgical stimulation†   G.A. Hans, S.M. Lauwick, A.
M. M. Sahinovic, D. J. Eleveld, T Miyabe-Nishiwaki, M. M. R. F
AnestAssist British Journal of Anaesthesia
Radial artery applanation tonometry for continuous non-invasive arterial pressure monitoring in intensive care unit patients: comparison with invasively.
Problems in obtaining sufficient anaesthesia with propofol and remifentanil: three cases, a test infusion, and a review  S. Bache, L. Stendell, N.V. Olsen,
Pharmacokinetic/pharmacodynamic model for unfractionated heparin dosing during cardiopulmonary bypass  X. Delavenne, E. Ollier, S. Chollet, F. Sandri,
A.R. Absalom, V. Mani, T. De Smet, M.M.R. F. Struys 
Hypotension during induction of anaesthesia is neither a reliable nor a useful quality measure for comparison of anaesthetists’ performance  R.H. Epstein,
Study of the time course of the clinical effect of propofol compared with the time course of the predicted effect-site concentration: performance of three.
M. Naguib, D. L. Hammond, P. G. Schmid III, M. T. Baker, J. Cutkomp, L
GAL-021, a new intravenous BKCa-channel blocker, is well tolerated and stimulates ventilation in healthy volunteers  J.F. McLeod, J.M. Leempoels, S.X.
Pharmacokinetics of intravenous emulsified isoflurane in beagle dogs
Pharmacokinetics of intranasal fentanyl in parturient
L. I. Cortínez, B. J. Anderson, A Penna, L Olivares, H. R. Muñoz, N. H
B.M.Q. Weaver, G.E. Staddon, W.W. Mapleson 
Chemical encapsulation of rocuronium by synthetic cyclodextrin derivatives: reversal of neuromuscular block in anaesthetized Rhesus monkeys†  H.D. de.
Dexmedetomidine pharmacodynamics in healthy volunteers: 2
Pharmacodynamic modelling of the bispectral index response to propofol-based anaesthesia during general surgery in children  C. Jeleazcov, H. Ihmsen,
Remifentanil–midazolam sedation for paediatric patients receiving mechanical ventilation after cardiac surgery†  A.E. Rigby-Jones, M.J. Priston, J.R.
Pharmacokinetics and haemodynamics of ketamine in intensive care patients with brain or spinal cord injury  Y. Hijazi, C. Bodonian, M. Bolon, F. Salord,
T. Iirola, H. Ihmsen, R. Laitio, E. Kentala, R. Aantaa, J. -P
A. Absalom, D. Amutike, A. Lal, M. White, G.N.C. Kenny 
Population pharmacokinetics of nalbuphine after surgery in children
Interaction of physostigmine and alfentanil in a human pain model†
W. Ruppen, L. A. Steiner, J. Drewe, L. Hauenstein, S. Brugger, M. D
Development of acute tolerance to the EEG effect of propofol in rats†
EEG-controlled closed-loop dosing of propofol in rats
Nitrous oxide for monitoring fluid absorption in volunteers†
Influence of nociceptive stimulation on analgesia nociception index (ANI) during propofol–remifentanil anaesthesia  M. Gruenewald, C. Ilies, J. Herz,
Recent advances in intravenous anaesthesia
Population pharmacokinetics of the two enantiomers of tramadol and O-demethyl tramadol after surgery in children  F. Bressolle, A. Rochette, S. Khier,
D. Jee, D. Lee, S. Yun, C. Lee  British Journal of Anaesthesia 
Dexmedetomidine pharmacokinetic–pharmacodynamic modelling in healthy volunteers: 1. Influence of arousal on bispectral index and sedation  P.J. Colin,
High inspired oxygen concentration increases the speed of onset of remifentanil- induced respiratory depression  A Dahan, M Douma, E Olofsen, M Niesters 
Population pharmacokinetics of ε-aminocaproic acid in adolescents undergoing posterior spinal fusion surgery  P.A. Stricker, M.R. Gastonguay, D. Singh,
Population pharmacokinetics of epsilon-aminocaproic acid in infants undergoing craniofacial reconstruction surgery  P.A. Stricker, A.F. Zuppa, J.E. Fiadjoe,
Left ventricular volume and ejection fraction assessment with transoesophageal echocardiography: 2D vs 3D imaging  B. Cowie, R. Kluger, M. Kalpokas  British.
Postoperative intravenous morphine titration
S. Pilge, D. Jordan, M. Kreuzer, E.F. Kochs, G. Schneider 
Patient state index vs bispectral index as measures of the electroencephalographic effects of propofol  M Soehle, M Kuech, M Grube, S Wirz, S Kreuer,
H. Beloeil, J.-X. Mazoit, D. Benhamou, J. Duranteau 
Blood alcohol concentration and psychomotor effects
Optimization of desflurane administration in morbidly obese patients: a comparison with sevoflurane using an ‘inhalation bolus’ technique  L.E.C. De Baerdemaeker,
Suppressive effect of nitrous oxide on motor evoked potentials can be reversed by train stimulation in rabbits under ketamine/fentanyl anaesthesia, but.
Predictive performance of ‘Servin's formula’ during BIS®-guided propofol-remifentanil target-controlled infusion in morbidly obese patients  A. Albertin,
Effectiveness, safety, and pharmacokinetic and pharmacodynamic characteristics of microemulsion propofol in patients undergoing elective surgery under.
Non-invasive continuous arterial pressure measurement based on radial artery tonometry in the intensive care unit: a method comparison study using the.
Predictive performance of the modified Marsh and Schnider models for propofol in underweight patients undergoing general anaesthesia using target-controlled.
Do old pharmacokinetic parameter estimates predict new data?
M Kodaka, Y Okamoto, F Handa, J Kawasaki, H Miyao 
Remifentanil–sevoflurane interaction models of circulatory response to laryngoscopy and circulatory depression  S.S. Bi, C.H. Deng, T.Y. Zhou, Z. Guan,
J.J. Vos, T.W.L. Scheeren, S.A. Loer, A. Hoeft, J.K.G. Wietasch 
T.G. Hansen, K.F. Ilett, S.I. Lim, C. Reid, L.P. Hackett, R. Bergesio 
N. Khalili-Mahani, C.H. Martini, E. Olofsen, A. Dahan, M. Niesters 
Model-based administration of inhalation anaesthesia. 4
Effects of remifentanil on cardiovascular and bispectral index responses to endotracheal intubation in severe pre-eclamptic patients undergoing Caesarean.
Molecular weight of hydroxyethyl starch: is there an effect on blood coagulation and pharmacokinetics?‡   C. Madjdpour, N. Dettori, P. Frascarolo, M.
Reduction of vasopressor requirement by hydrocortisone administration in a patient with cerebral vasospasm  J.A. Alhashemi  British Journal of Anaesthesia 
T. Tatara, T. Tsunetoh, C. Tashiro  British Journal of Anaesthesia 
Early stages of propofol infusion syndrome in paediatric cardiac surgery: two cases in adolescent girls  N. Laquay, P. Pouard, M.A. Silicani, L. Vaccaroni,
I.V. ropivacaine compared with lidocaine for the treatment of tinnitus
M.A. Tooley, C.L. Stapleton, G.L. Greenslade, C Prys-Roberts 
Hypothermic responses to infection are inhibited by α2-adrenoceptor agonists with possible clinical implications  S. Tolchard, P.A. Burns, D.J. Nutt,
The suppression of spinal F-waves by propofol does not predict immobility to painful stimuli in humans†  J.H. Baars, S Tas, K.F. Herold, D.A. Hadzidiakos,
Presentation transcript:

Pharmacodynamic response modelling of arterial blood pressure in adult volunteers during propofol anaesthesia  C. Jeleazcov, M. Lavielle, J. Schüttler, H. Ihmsen  British Journal of Anaesthesia  Volume 115, Issue 2, Pages 213-226 (August 2015) DOI: 10.1093/bja/aeu553 Copyright © 2015 The Author(s) Terms and Conditions

Fig 1 Time courses of the measured plasma concentrations of propofol (a) and measured arterial blood pressure (b–d) after start of the infusion of propofol at time zero. Each line depicts the data of one volunteer. SAP, systolic arterial blood pressure; MAP, mean arterial blood pressure; DAP, diastolic arterial blood pressure. British Journal of Anaesthesia 2015 115, 213-226DOI: (10.1093/bja/aeu553) Copyright © 2015 The Author(s) Terms and Conditions

Fig 2 Time course of measured divided by predicted plasma concentrations of propofol for individual (a) and population (b) model predictions. Each blue line depicts the data of one volunteer. British Journal of Anaesthesia 2015 115, 213-226DOI: (10.1093/bja/aeu553) Copyright © 2015 The Author(s) Terms and Conditions

Fig 3 Goodness-of-fit plots: measured arterial blood pressure vs the individual Bayesian (a, d and g) and the population predictions (b, e and h), and the population-weighted residuals vs time after start of the infusion of propofol at time zero (c, f and i) as obtained with the final pharmacodynamic model (direct response model 4 with two effect compartments). The solid black diagonal line represents the line of identity (measured=predicted). PWRES, population-weighted residuals. British Journal of Anaesthesia 2015 115, 213-226DOI: (10.1093/bja/aeu553) Copyright © 2015 The Author(s) Terms and Conditions

Fig 4 Visual prediction checks of the final pharmacodynamic model (direct response model 4 with two effect compartments) with the median of model predictions (blue line) and the 90% confidence interval (pink shaded area). Superimposed are the measured values of arterial blood pressure (black circles). SAP, systolic arterial blood pressure; MAP, mean arterial blood pressure; DAP, diastolic arterial blood pressure. British Journal of Anaesthesia 2015 115, 213-226DOI: (10.1093/bja/aeu553) Copyright © 2015 The Author(s) Terms and Conditions

Fig 5 Arterial blood pressure as a function of the effect site concentrations of propofol. Data were simulated for a 23 yr old individual using the final pharmacodynamic model (direct response model 4 with two effect compartments). The function is shown as 3D surface plot of SAP (a), MAP (b) and DAP (c). Superimposed are the measured blood pressure data in each volunteer (blue and green dots for values above and below the 3D surface, respectively) plotted vs the effect site concentrations, as calculated with the individual pharmacokinetic and pharmacodynamic parameters. EC1, effect site concentration in effect compartment 1; EC2, effect site concentration in effect compartment 2; SAP, systolic arterial blood pressure; MAP, mean arterial blood pressure; DAP, diastolic arterial blood pressure. British Journal of Anaesthesia 2015 115, 213-226DOI: (10.1093/bja/aeu553) Copyright © 2015 The Author(s) Terms and Conditions

Fig 6 Simulated time course of plasma and effect site concentrations of propofol and arterial blood pressure. Propofol infusion started with a bolus dose of 1.5 mg kg−1 at time zero, followed immediately by 10 mg kg−1 h−1 for 10 min, 8 mg kg−1 h−1 for the next 10 min, and 6 mg kg−1 h−1 for the remaining 60 min. The simulations were based on the final pharmacokinetic/-dynamic model for a 23 yr old individual of 70 kg body weight. Cp, plasma concentration; EC1, effect site concentration in effect compartment 1; EC2, effect site concentration in effect compartment 2; SAP, systolic arterial blood pressure; MAP, mean arterial blood pressure; DAP, diastolic arterial blood pressure. British Journal of Anaesthesia 2015 115, 213-226DOI: (10.1093/bja/aeu553) Copyright © 2015 The Author(s) Terms and Conditions