Volume 21, Issue 23, Pages (December 2011)

Slides:



Advertisements
Similar presentations
Transient Membrane Localization of SPV-1 Drives Cyclical Actomyosin Contractions in the C. elegans Spermatheca  Pei Yi Tan, Ronen Zaidel-Bar  Current.
Advertisements

Volume 19, Issue 11, Pages (November 2011)
Volume 16, Issue 17, Pages (September 2006)
Volume 23, Issue 11, Pages (June 2013)
Volume 20, Issue 2, Pages (January 2010)
The Cilium Secretes Bioactive Ectosomes
Colleen T. Skau, David R. Kovar  Current Biology 
Volume 22, Issue 21, Pages (November 2012)
Volume 19, Issue 23, Pages (December 2009)
Volume 25, Issue 7, Pages (March 2015)
Volume 109, Issue 11, Pages (December 2015)
Volume 27, Issue 6, Pages (March 2017)
Endocytic Internalization Routes Required for Delta/Notch Signaling
Volume 17, Issue 4, Pages (October 2009)
Rapid De Novo Centromere Formation Occurs Independently of Heterochromatin Protein 1 in C. elegans Embryos  Karen W.Y. Yuen, Kentaro Nabeshima, Karen.
Volume 18, Issue 21, Pages (November 2008)
Reconstitution of Amoeboid Motility In Vitro Identifies a Motor-Independent Mechanism for Cell Body Retraction  Katsuya Shimabukuro, Naoki Noda, Murray.
Yvonne Stahl, René H. Wink, Gwyneth C. Ingram, Rüdiger Simon 
Nikhila S. Tanneti, Kathryn Landy, Eric F. Joyce, Kim S. McKim 
Ksenia Smurova, Benjamin Podbilewicz  Cell Reports 
Volume 16, Issue 20, Pages (October 2006)
Integrin Signaling Regulates Spindle Orientation in Drosophila to Preserve the Follicular- Epithelium Monolayer  Ana Fernández-Miñán, María D. Martín-Bermudo,
Jason Jacoby, Yongling Zhu, Steven H. DeVries, Gregory W. Schwartz 
Dan Zhang, Aleksandar Vjestica, Snezhana Oliferenko  Current Biology 
Volume 28, Issue 7, Pages e4 (April 2018)
Volume 26, Issue 1, Pages (January 2016)
Volume 27, Issue 9, Pages (May 2017)
Long-Range Directional Movement of an Interphase Chromosome Site
Loss of INCREASED SIZE EXCLUSION LIMIT (ISE)1 or ISE2 Increases the Formation of Secondary Plasmodesmata  Tessa M. Burch-Smith, Patricia C. Zambryski 
Volume 27, Issue 16, Pages e4 (August 2017)
The Centriolar Protein Bld10/Cep135 Is Required to Establish Centrosome Asymmetry in Drosophila Neuroblasts  Priyanka Singh, Anjana Ramdas Nair, Clemens.
Reconstitution of Amoeboid Motility In Vitro Identifies a Motor-Independent Mechanism for Cell Body Retraction  Katsuya Shimabukuro, Naoki Noda, Murray.
Volume 60, Issue 4, Pages (November 2008)
Xuehong Xu, Bruce E. Vogel  Current Biology 
Volume 20, Issue 21, Pages (November 2010)
Jen-Yi Lee, Richard M. Harland  Current Biology 
Membrane Hemifusion Is a Stable Intermediate of Exocytosis
Volume 17, Issue 6, Pages (March 2007)
Volume 16, Issue 7, Pages (April 2006)
Anne Pelissier, Jean-Paul Chauvin, Thomas Lecuit  Current Biology 
Determinants of S. cerevisiae Dynein Localization and Activation
Volume 80, Issue 6, Pages (December 2013)
The C. elegans Glycopeptide Hormone Receptor Ortholog, FSHR-1, Regulates Germline Differentiation and Survival  Saeyoull Cho, Katherine W. Rogers, David S.
Volume 26, Issue 16, Pages (August 2016)
Joshua N. Bembenek, John G. White, Yixian Zheng  Current Biology 
Arthur Millius, Sheel N. Dandekar, Andrew R. Houk, Orion D. Weiner 
Volume 22, Issue 14, Pages (July 2012)
Natalie Elia, Carolyn Ott, Jennifer Lippincott-Schwartz  Cell 
Julie E. Cooke, Hilary A. Kemp, Cecilia B. Moens  Current Biology 
Volume 17, Issue 22, Pages (November 2007)
Volume 2, Issue 6, Pages (December 2012)
A Modern Descendant of Early Green Algal Phagotrophs
Volume 16, Issue 17, Pages (September 2006)
Dynamic Shape Synthesis in Posterior Inferotemporal Cortex
Volume 22, Issue 14, Pages (July 2012)
Exosomes in urine: Who would have thought…?
Volume 21, Issue 4, Pages (February 2011)
Jessica L. Feldman, James R. Priess  Current Biology 
Variation in the Dorsal Gradient Distribution Is a Source for Modified Scaling of Germ Layers in Drosophila  Juan Sebastian Chahda, Rui Sousa-Neves, Claudia Mieko.
Volume 20, Issue 7, Pages (April 2010)
Anna Marie Sokac, Eric Wieschaus  Developmental Cell 
Volume 15, Issue 11, Pages (June 2005)
A Bmp/Admp Regulatory Circuit Controls Maintenance and Regeneration of Dorsal- Ventral Polarity in Planarians  Michael A. Gaviño, Peter W. Reddien  Current.
Anup Padmanabhan, Hui Ting Ong, Ronen Zaidel-Bar  Current Biology 
MT1-MMP-Dependent Invasion Is Regulated by TI-VAMP/VAMP7
Novel Functions for Integrins in Epithelial Morphogenesis
Volume 21, Issue 11, Pages (June 2011)
Masamitsu Fukuyama, Ann E. Rougvie, Joel H. Rothman  Current Biology 
Exosomes and Ectosomes in Intercellular Communication
Volume 17, Issue 18, Pages (September 2007)
Presentation transcript:

Volume 21, Issue 23, Pages 1951-1959 (December 2011) The P4-ATPase TAT-5 Inhibits the Budding of Extracellular Vesicles in C. elegans Embryos  Ann M. Wehman, Corey Poggioli, Peter Schweinsberg, Barth D. Grant, Jeremy Nance  Current Biology  Volume 21, Issue 23, Pages 1951-1959 (December 2011) DOI: 10.1016/j.cub.2011.10.040 Copyright © 2011 Elsevier Ltd Terms and Conditions

Current Biology 2011 21, 1951-1959DOI: (10.1016/j.cub.2011.10.040) Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 1 TAT-5 Is Required for Cell Shape Changes and Gastrulation (A and B) Stills of 28-cell embryos from differential interference contrast (DIC) movies. E indicates endodermal precursors ingressing in control but not tat-5 embryos. (C and D) Endodermal precursors express end-1::GFP::CAAX during gastrulation in 26-cell embryos. P granules (red) localize to the germ cell precursor. (E and F) Stills of late 4-cell embryos from DIC movies. Arrowheads point to the anterior edge of EMS, which extends under ABa in control but not tat-5 embryos. (G and H) Stills of devitellinized late 4-cell embryos from DIC movies. Cells appear more rounded in tat-5 embryos as denoted by contour lines. All images lateral views with anterior to the left and dorsal up. Scale bar represents 15 μm. See also Figure S1, Movie S1, and Movie S2. Current Biology 2011 21, 1951-1959DOI: (10.1016/j.cub.2011.10.040) Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 2 Extracellular Vesicles Are Present on Cell Surfaces and between Cell-Cell Contacts in tat-5 Embryos (A and B) PHPLC1∂1::mCherry in 4-cell embryos. Arrowheads point to thick patches of membrane in tat-5 embryos. Scale bar represents 15 μm. (C and D) Transmission electron micrograph (TEM) of the cell contact from 2-cell embryos. Black and white arrowheads point to the plasma membrane of different cells. (E and F) TEM of the surface of 1-cell embryos. Arrows point to extracellular vesicles or tubules. Scale bars in (C)–(F) represent 200 nm. See Figure S2 for additional TEMs. Current Biology 2011 21, 1951-1959DOI: (10.1016/j.cub.2011.10.040) Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 3 Extracellular Vesicles Are Generated by Budding from the Plasma Membrane (A) Model based on a TEM tomogram depicting the range in vesicle (arrowhead) and tubulovesicle (arrow) shapes found in a 2-cell tat-5 embryo. Each color represents a distinct structure and only membranes are traced. (A′) Box from (A) depicting a vesicle (shaded) connected to the plasma membrane. See also Movie S3 for vesicle shapes. (B) Histogram of vesicle diameters from tat-5 intralumenal multivesicular body (MVB) vesicles (light gray) averaging 65 ± 15 nm, n = 110 from three embryos, and extracellular vesicles (dark gray) averaging 149 ± 35 nm, n = 89 extracellular vesicles (ECVs) from three embryos. (C and D) GFP::ZF1::SYX-4 (green) in 26-cell embryos. Dotted lines trace cells where ZF1 degradation has occurred. In insets, SAX-7 (red) labels the plasma membrane. Nuclei are blue. (E and F) Surface view of 26-cell embryos expressing med-1::GFP::CAAX. Oval outlines embryos. Arrowheads point to membrane thickening. See Figure S3 for exosome marker data. Current Biology 2011 21, 1951-1959DOI: (10.1016/j.cub.2011.10.040) Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 4 TAT-5 Localizes to the Plasma Membrane and Maintains Phosphatidylethanolamine Asymmetry (A and B) GFP::TAT-5 (A) and GFP::TAT-5(E246Q) (B) expression in 2-cell embryos. (C and D) GFP::TAT-5 (C) rescues (n = 164 embryos) and GFP::TAT-5(E246Q) (D) fails to rescue (n = 28 embryos) membrane thickenings (arrowhead) in 15-cell embryos from tat-5(tm1741) mothers. (E–G) Annexin V staining in 8- to 16-cell devitellinized embryos. (H) Graph of normalized Annexin V membrane labeling intensity (control: n = 20 embryos, tat-1: n = 14, tat-5: n = 14). (I–K) Duramycin staining in 44- to 46-cell devitellinized embryos. Arrowhead marks a cell contact. (L) Graph of normalized duramycin membrane labeling intensity (control: n = 15 embryos, tat-1: n = 12, tat-5: n = 7). Data are represented as mean ± standard deviation (SD). Asterisks mark a significant difference compared to control: ∗p < 0.05, ∗∗p < 0.01. See Figure S4 for GFP::TAT-5(D439E) localization and overall phospholipid content. Current Biology 2011 21, 1951-1959DOI: (10.1016/j.cub.2011.10.040) Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 5 Clathrin, RAB-11, and the ESCRT Complex Are Recruited to the Plasma Membrane in tat-5 Embryos (A and B) GFP::CHC-1 (clathrin) in 4-cell embryos. Arrowhead indicates cell contact. (C and D) GFP::RAB-11 in 4-cell embryos. Bright spot is midbody. (E and F) GFP::MVB-12 (ESCRT-I) in 4-cell embryos from vps-4 feeding RNA interference (fRNAi) and tat-5 + vps-4 double-stranded RNA (dsRNA) injections. (G and H) Projections of 2-cell embryos stained for ESCRT-III protein VPS-32 (green) from vps-4 fRNAi or tat-5 + vps-4 dsRNA injections (vps-4: 0.27 ± 0.11 puncta/μm, n = 7, 136 μm examined; tat-5 + vps-4: 0.62 ± 0.16 puncta/μm, n = 4, 97 μm examined; p < 0.01). PAR-3 (red) marks cell cortex. See Figure S5 for more endosomal markers. Current Biology 2011 21, 1951-1959DOI: (10.1016/j.cub.2011.10.040) Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 6 RAB-11 and the ESCRT Complex Mediate Extracellular Vesicle Production (A and B) Graphs displaying percentage of embryos ± SD with wild-type membranes, or mild or severe thickenings. Thickenings were judged mild if they only affected a subset of 3-cell junctions or severe if they affected 2- and 3-cell junctions. Asterisks mark a significant difference compared to tat-5: ∗p < 0.05, ∗∗p < 0.01. (C–H) Embryos expressing PHPLC1∂1::GFP from adults injected with the indicated dsRNAs. See Figure S6 for controls and Table S1 for n values. Current Biology 2011 21, 1951-1959DOI: (10.1016/j.cub.2011.10.040) Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 7 Two Models for the Role of TAT-5 and PE Externalization in Ectosome Production (A and B) TAT-5 normally internalizes phosphatidylethanolamine (PE). PE externalization by an unknown scramblase could lead to the recruitment or stabilization of the ESCRT complex to the plasma membrane, where the ESCRT complex buds out ectosomes. RAB-11 could deliver proteins needed for budding to the plasma membrane or could have a more direct role in the budding process. (A) Externalized PE results in microdomains of increased negative charge at the cytoplasmic face (from relatively increased phosphatidylserine and phosphatidylinositols density). (B) Externalized PE induces domains of negative membrane curvature that could act as hinge regions. These models are not exclusive. Current Biology 2011 21, 1951-1959DOI: (10.1016/j.cub.2011.10.040) Copyright © 2011 Elsevier Ltd Terms and Conditions