Jieun Lee, Joseph Choi, Susanna Scafidi, Michael J. Wolfgang 

Slides:



Advertisements
Similar presentations
Volume 6, Issue 8, Pages (August 2017)
Advertisements

Volume 5, Issue 10, Pages (October 2016)
Peter L. Lee, Yuefeng Tang, Huawei Li, David A. Guertin 
Volume 2, Issue 3, Pages (August 2013)
Volume 10, Issue 4, Pages (October 2009)
Elsie Gonzalez-Hurtado, Jieun Lee, Joseph Choi, Michael J. Wolfgang
Volume 26, Issue 4, Pages e4 (October 2017)
Volume 12, Issue 1, Pages (July 2010)
Volume 20, Issue 3, Pages (July 2017)
Volume 11, Issue 8, Pages (May 2015)
Volume 15, Issue 1, Pages (January 2012)
Volume 17, Issue 1, Pages (January 2013)
Volume 7, Issue 2, Pages (February 2008)
Molecular Therapy of Melanocortin-4-Receptor Obesity by an Autoregulatory BDNF Vector  Jason J. Siu, Nicholas J. Queen, Xianglan Liu, Wei Huang, Travis.
Volume 22, Issue 8, Pages (February 2018)
Volume 16, Issue 1, Pages 1-8 (June 2016)
Volume 20, Issue 4, Pages (October 2014)
Volume 3, Issue 5, Pages (May 2006)
Volume 16, Issue 10, Pages (September 2016)
Volume 20, Issue 4, Pages (October 2014)
Hepatic rRNA Transcription Regulates High-Fat-Diet-Induced Obesity
Volume 11, Issue 5, Pages (May 2010)
Grzegorz Sumara, Olga Sumara, Jason K. Kim, Gerard Karsenty 
Volume 23, Issue 7, Pages (May 2018)
Volume 6, Issue 3, Pages (September 2007)
Volume 21, Issue 11, Pages (December 2017)
Volume 17, Issue 5, Pages (May 2013)
Volume 21, Issue 10, Pages (December 2017)
Volume 18, Issue 13, Pages (March 2017)
Volume 16, Issue 2, Pages (July 2016)
Volume 12, Issue 3, Pages (July 2015)
Volume 20, Issue 1, Pages (July 2014)
Hepatic rRNA Transcription Regulates High-Fat-Diet-Induced Obesity
Volume 16, Issue 7, Pages (August 2016)
Protection against High-Fat-Diet-Induced Obesity in MDM2C305F Mice Due to Reduced p53 Activity and Enhanced Energy Expenditure  Shijie Liu, Tae-Hyung.
Volume 14, Issue 10, Pages (March 2016)
Cold-Inducible SIRT6 Regulates Thermogenesis of Brown and Beige Fat
Volume 16, Issue 4, Pages (October 2012)
Volume 20, Issue 1, Pages (July 2014)
Volume 21, Issue 5, Pages (May 2015)
Volume 17, Issue 8, Pages (November 2016)
Volume 10, Issue 5, Pages (November 2009)
Volume 73, Issue 11, Pages (June 2008)
Volume 8, Issue 4, Pages (October 2008)
Volume 25, Issue 4, Pages e4 (April 2017)
Volume 5, Issue 6, Pages (June 2007)
Volume 5, Issue 5, Pages (May 2007)
Volume 24, Issue 8, Pages e7 (August 2018)
Volume 6, Issue 3, Pages (September 2007)
Volume 16, Issue 3, Pages (July 2016)
Volume 25, Issue 5, Pages (October 2018)
Volume 8, Issue 5, Pages (November 2008)
Volume 159, Issue 2, Pages (October 2014)
Volume 14, Issue 6, Pages (February 2016)
Volume 15, Issue 2, Pages (April 2016)
Identification of SH2-B as a key regulator of leptin sensitivity, energy balance, and body weight in mice  Decheng Ren, Minghua Li, Chaojun Duan, Liangyou.
Mitofusin 2 in Mature Adipocytes Controls Adiposity and Body Weight
Systemic GADD45β deletion affects metabolic regulation under conditions of heightened lipid metabolism Systemic GADD45β deletion affects metabolic regulation.
Lipin, a lipodystrophy and obesity gene
Volume 4, Issue 5, Pages (November 2006)
Volume 25, Issue 12, Pages e6 (December 2018)
Hepatic fuel metabolism in male 5αR1-KO and WT mice
Adipose Fatty Acid Oxidation Is Required for Thermogenesis and Potentiates Oxidative Stress-Induced Inflammation  Jieun Lee, Jessica M. Ellis, Michael J.
Volume 27, Issue 10, Pages e3 (June 2019)
Loss of Adipose Growth Hormone Receptor in Mice Enhances Local Fatty Acid Trapping and Impairs Brown Adipose Tissue Thermogenesis  Liyuan Ran, Xiaoshuang.
Volume 18, Issue 3, Pages (January 2017)
Brown Adipose Tissue Thermogenic Capacity Is Regulated by Elovl6
Volume 26, Issue 1, Pages 1-10.e7 (January 2019)
Volume 16, Issue 3, Pages (September 2012)
Volume 6, Issue 6, Pages (December 2007)
Presentation transcript:

Hepatic Fatty Acid Oxidation Restrains Systemic Catabolism during Starvation  Jieun Lee, Joseph Choi, Susanna Scafidi, Michael J. Wolfgang  Cell Reports  Volume 16, Issue 1, Pages 201-212 (June 2016) DOI: 10.1016/j.celrep.2016.05.062 Copyright © 2016 The Author(s) Terms and Conditions

Cell Reports 2016 16, 201-212DOI: (10.1016/j.celrep.2016.05.062) Copyright © 2016 The Author(s) Terms and Conditions

Figure 1 Characterization of Mice with a Liver-Specific KO of CPT2 (A) Western blot for CPT2 in liver of Cpt2lox/lox and Cpt2L−/− mice. (B) mRNA for Cpt2 across different tissues (n = 6). (C) Oxidation of 1-14C-oleic acid and 1-14C-Lignoceric acid to 14CO2 in liver slices of Cpt2lox/lox and Cpt2L−/− mice (n = 5). (D) Body weights of Cpt2lox/lox and Cpt2L−/− male and female mice fed a normal chow diet (males, n = 14–23; females, n = 8–12). Data are expressed as mean ± SEM. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001. Cell Reports 2016 16, 201-212DOI: (10.1016/j.celrep.2016.05.062) Copyright © 2016 The Author(s) Terms and Conditions

Figure 2 Liver and Systemic Deficits in Fed and 24-hr-Fasted Cpt2L−/− Mice (A) Serum metabolites in Cpt2lox/lox and Cpt2L−/− mice (n = 6). (B) Energy expenditure and respiratory exchange ratio of Cpt2lox/lox and Cpt2L−/− mice under fed, fast, and refed conditions (males, n = 5–7). (C) Total fat and lean mass of Cpt2lox/lox and Cpt2L−/− male mice (n = 5–7). (D) Wet weights of fed or 24-hr-fasted iWAT, gWAT, and liver for Cpt2lox/lox and Cpt2L−/− mice (n = 6–10). (E) Gross and histological morphology of livers from 24-hr-fasted Cpt2lox/lox and Cpt2L−/− mice. Scale bar, 100 μM. (F) Triglyceride levels from liver homogenates of fed and 24-hr-fasted Cpt2lox/lox and Cpt2L−/− mice (n = 5). (G) Liver damage measured by serum ALT activity of fed and 24-hr-fasted Cpt2lox/lox and Cpt2L−/− mice (n = 5). (H) TBARS assay measuring lipid peroxidation from liver of fed and 24-hr-fasted Cpt2lox/lox and Cpt2L−/− mice (n = 5). Data are expressed as mean ± SEM. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001. Cell Reports 2016 16, 201-212DOI: (10.1016/j.celrep.2016.05.062) Copyright © 2016 The Author(s) Terms and Conditions

Figure 3 Loss of Hepatic Fatty Acid Oxidation Induces Expression of Fatty Acid Oxidative Genes (A) Gene expression of fatty acid oxidation genes in liver of fed and 24-hr-fasted Cpt2lox/lox and Cpt2L−/− mice (n = 6). (B) Western blots of proteins in fatty acid metabolism. Composite of eight blots. All blots were normalized to Hsc70 (Figure S2). (C) Liver mRNA (n = 6) of Fgf21, Gdf15, and Igfbp1 in fed and 24-hr-fasted Cpt2lox/lox and Cpt2L−/− mice. (D) Serum concentrations (n = 8) of Fgf21, Gdf15, and Igfbp1 in fed and 24-hr-fasted Cpt2lox/lox and Cpt2L−/− mice. Data are expressed as mean ± SEM. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001. Cell Reports 2016 16, 201-212DOI: (10.1016/j.celrep.2016.05.062) Copyright © 2016 The Author(s) Terms and Conditions

Figure 4 Loss of Hepatic Fatty Acid Oxidation Results in Compensation from the Kidney, Muscle, and Adipose Tissue (A) Gene expression of fatty acid oxidation genes in the kidney of fed and 24-hr-fasted Cpt2lox/lox and Cpt2L−/− mice (n = 6). (B) Western blots of proteins in fatty acid metabolism. Composite of five blots. All blots were normalized to Hsc70 (Figure S3). (C) Gross kidney morphology in 24-hr-fasted Cpt2lox/lox and Cpt2L−/− mice. (D) Kidney wet weight of fed and 24-hr-fasted Cpt2lox/lox and Cpt2L−/− mice (n = 6–10). (E) Kidney TAG content of fed and 24-hr-fasted Cpt2lox/lox and Cpt2L−/− mice (n = 5). (F) iBAT gene expression of fed and 24-hr-fasted Cpt2lox/lox and Cpt2L−/− mice (n = 6). (G) iWAT gene expression of fed and 24-hr-fasted Cpt2lox/lox and Cpt2L−/− mice (n = 6). (H) gWAT adiponectin mRNA (n = 6) and Adiponectin serum concentration (n = 8) of fed and 24-hr-fasted Cpt2lox/lox and Cpt2L−/− mice. (I) Gene expression of fatty acid oxidation genes in the gastrocnemius muscle of fed and 24-hr-fasted Cpt2lox/lox and Cpt2L−/− mice (n = 6). (J) Gastrocnemius muscle mRNA of Fgf21 in fed and 24-hr-fasted Cpt2lox/lox and Cpt2L−/− mice (n = 6). Data are expressed as mean ± SEM. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001. Cell Reports 2016 16, 201-212DOI: (10.1016/j.celrep.2016.05.062) Copyright © 2016 The Author(s) Terms and Conditions

Figure 5 A Ketogenic Diet Results in Hypoglycemia, a Depletion of Adipose Triglyceride, and Eventually Lethality in Cpt2L−/− Mice (A) Body weights of Cpt2lox/lox and Cpt2L−/− mice fed a normal chow or ketogenic diet for 6 days (normal chow, n = 6–10; ketogenic diet, n = 5–6). (B) Wet weight of liver from Cpt2lox/lox and Cpt2L−/− mice fed a ketogenic diet for 6 days (n = 5–6). (C) Liver damage measured by serum ALT activity of Cpt2lox/lox and Cpt2L−/− mice fed a ketogenic diet (n = 5). (D) Serum metabolites in Cpt2lox/lox and Cpt2L−/− mice after a 6-day ketogenic diet (n = 5–6). (E) Gross morphology of Cpt2lox/lox and Cpt2L−/− mice fed a ketogenic diet. (F) Gene expression of fatty acid oxidation genes in the liver of Cpt2lox/lox and Cpt2L−/− mice fed a ketogenic diet (n = 6). (G) Serum concentrations of Fgf21, Gdf15, and Igfbp1 of Cpt2lox/lox and Cpt2L−/− mice fed a ketogenic diet (n = 6). Data are expressed as mean ± SEM. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001. Cell Reports 2016 16, 201-212DOI: (10.1016/j.celrep.2016.05.062) Copyright © 2016 The Author(s) Terms and Conditions

Figure 6 Time Course of Body Weight, Blood Glucose, and Acylcarnitines in Cpt2L−/− Mice Fed a Ketogenic Diet (A) Blood glucose of Cpt2lox/lox and Cpt2L−/− mice during a 4-day ketogenic diet (n = 5). (B) Body weight of Cpt2lox/lox and Cpt2L−/− mice during a 4-day ketogenic diet (n = 5). (C) Liver and blood L-carnitine of Cpt2lox/lox and Cpt2L−/− mice following a 4-day ketogenic diet (n = 5). (D) Total blood acylcarnitines and acetylcarnitine of Cpt2lox/lox and Cpt2L−/− mice following a 4-day ketogenic diet (n = 5). (E) Daily blood long-chain (C18:0, C18:1) acylcarnitines of Cpt2lox/lox and Cpt2L−/− mice during a 4-day ketogenic diet (n = 5). (F) Total liver acylcarnitines and acetylcarnitine of Cpt2lox/lox and Cpt2L−/− mice following a 4-day ketogenic diet (n = 4–5). (G) Total liver long-chain (C16:0, C18:0, C18:1) acylcarnitines and acetylcarnitine of Cpt2lox/lox and Cpt2L−/− mice following a 4-day ketogenic diet (n = 4–5). Data are expressed as mean ± SEM. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001. Cell Reports 2016 16, 201-212DOI: (10.1016/j.celrep.2016.05.062) Copyright © 2016 The Author(s) Terms and Conditions