Find: CC Lab Test Data e C) 0.38 D) 0.50 Load [kPa] 0.919

Slides:



Advertisements
Similar presentations
EXAMPLE 1 Write an equation of a line from a graph
Advertisements

Settlement Immediate settlement – Caused by elastic deformation of dry and moist soil without any change in moisture content Primary Consolidation Settlement.
EXAMPLE 2 Graph direct variation equations Graph the direct variation equation. a.a. y = x 2 3 y = –3x b.b. SOLUTION a.a. Plot a point at the origin. The.
Graph an equation in standard form
Solve the equation for y. SOLUTION EXAMPLE 2 Graph an equation Graph the equation –2x + y = –3. –2x + y = –3 y = 2x –3 STEP 1.
Example: Cc = 0.72 Void Ratio (e) Cs = 0.1 Po Log (p) Cc Cs Figure 1
Since all points on the x-axis have a y-coordinate of 0, to find x-intercept, let y = 0 and solve for x Since all points on the y-axis have an x-coordinate.
Kamal Tawfiq, Ph.D., P.E., F.ASCE
Quick Graphs of Linear Equations
Graphing Lines Using Intercepts
Graphing Linear Equations
Linear Equations in two variables
Objective- To use slope and y-intercept to
Find: max L [ft] 470 1,330 1,780 2,220 Pmin=50 [psi] hP=130 [ft] tank
Find: y1 Q=400 [gpm] 44 Sand y2 y1 r1 r2 unconfined Q
Find: The Lightest I Beam
3.4 Notes: Equations of Lines
Find: QC [L/s] ,400 Δh=20 [m] Tank pipe A 1 pipe B Tank 2
Find: DOB mg L A B C chloride= Stream A C Q [m3/s]
Find: Q gal min 1,600 1,800 2,000 2,200 Δh pipe entrance fresh water h
Find: Phome [psi] 40 C) 60 B) 50 D) 70 ft s v=5 C=100
Find: u [kPa] at point B D C B A Water Sand Silt Aquifer x
Find: sc 0.7% 1.1% 1.5% 1.9% d b ft3 Q=210 s b=12 [ft] n=0.025
Find: c(x,t) [mg/L] of chloride
Find: QBE gal min 2, A F B Pipe AB BC CD DE EF FA BE C
Find: the soil classification
Find: f(4[hr]) [cm/hr] saturation 0% 100%
Find: 30 C mg L θd=1.047 Kd,20 C=0.11 [day-1]
Find: ρc [in] from load after 2 years
Find: minimum # of stages
Find: FCD [kN] 25.6 (tension) 25.6 (compression) 26.3 (tension)
Find: Qpeak [cfs] Time Unit Rainfall Infiltration
Find: 4-hr Unit Hydrograph
Find: V [ft/s] xL xR b b=5 [ft] xL=3 xR=3 ft3 s
Find: R’ [ft] A V’ V CAB=1,000 [ft] LV’V=20 [ft] I=60 B’ B
Find: min D [in] = P=30,000 people 18+P/1000 PF= 4+P/1000
γdry=110 Find: VTotal[ft3] of borrowed soil Fill VT=10,000 [ft3]
Find: Dc mg L at 20 C [mg/L] Water Body Q [m3/s] T [C] BOD5 DO
Find: Mmax [lb*ft] in AB
Find: max d [ft] Qin d ψ = 0.1 [ft] Δθ = 0.3 time inflow
Find: the soil classification
Find: Qp [cfs] tc Area C [acre] [min] Area Area B A
Find: AreaABC [ft2] C A B C’ 43,560 44,600 44,630 45,000
Find: STAB I1=90 C 2,500 [ft] 2,000 [ft] B D A curve 1 R1=R2 F curve 2
Find: Omax [cfs] Given Data 29,000 33,000 37,000 41,000 inflow outflow
Find: Qp [cfs] shed area tc C 1,050 1,200 1,300 1,450 A B C Q [acre]
Find: Bearing Capacity, qult [lb/ft2]
Find: Daily Pumping Cost [$]
Find: hmax [m] L hmax h1 h2 L = 525 [m]
Find: Mg S O4 mg (hypothetical) L Ca2+ SO4 Mg2+ Na+ - HCO3 Cl- Ion C
EXAMPLE 1 Write an equation of a line from a graph
Graphing and Writing Equations in Standard Form
Find: % of sand in soil sieve # mass retained [g] 60% 70% 80% D) 90% 4
Find: LBC [ft] A Ax,y= ( [ft], [ft])
Find: Q [L/s] L h1 h1 = 225 [m] h2 h2 = 175 [m] Q
Find: cV [in2/min] Deformation Data C) 0.03 D) 0.04 Time
Find: wc wdish=50.00[g] wdish+wet soil=58.15[g]
Find: Vwater[gal] you need to add
Find: αNAB N STAB=7+82 B STAA= D=3 20’ 00” A O o o
Find: hL [m] rectangular d channel b b=3 [m]
Find: Time [yr] for 90% consolidation to occur
Find: hT Section Section
Find: Saturation, S 11% d=2.8 [in] 17% 23% 83% L=5.5 [in] clay
Find: STAC B C O A IAB R STAA= IAB=60
Graphing Systems of Equations
Find: LL laboratory data: # of turns Wdish [g] Wdish+wet soil [g]
Find: z [ft] z 5 8 C) 10 D) 12 Q pump 3 [ft] water sand L=400 [ft]
Find: Pe [in] N P=6 [in] Ia=0.20*S Land use % Area
Objective graph linear equations using slope-intercept form.
Find: M [k*ft] at L/2 A B w 5 w=2 [k/ft] 8 21 L=10 [ft] 33 L
Presentation transcript:

Find: CC Lab Test Data e 0.03 0.07 C) 0.38 D) 0.50 Load [kPa] 0.919 0.900 0.890 0.868 0.825 0.771 0.687 0.572 0.463 Load [kPa] 6.25 12.5 25 50 100 200 400 800 Find the compression index, also referred to as the virgin compression index, C sub c. In this problem,

Find: CC Lab Test Data e 0.03 0.07 C) 0.38 D) 0.50 Load [kPa] 0.919 0.900 0.890 0.868 0.825 0.771 0.687 0.572 0.463 Load [kPa] 6.25 12.5 25 50 100 200 400 800 We’ve been provided laboratory data from a consolidation test.

Find: CC Lab Test Data e Load [kPa] 0.919 6.25 0.900 0.890 12.5 25 0.868 0.825 0.771 0.687 0.572 0.463 Load [kPa] 6.25 12.5 25 50 100 200 400 800 The compression index can be determined by plotting ---

Find: CC e Lab Test Data e Load [kPa] Load [kPa] 0.919 6.25 0.900 0.890 0.868 0.825 0.771 0.687 0.572 0.463 Load [kPa] 6.25 12.5 25 50 100 200 400 800 the laboratory test data on a semi-log graph, where --- Load [kPa]

Find: CC e Lab Test Data e Load [kPa] Load [kPa] 0.919 6.25 0.900 0.890 0.868 0.825 0.771 0.687 0.572 0.463 Load [kPa] 6.25 12.5 25 50 100 200 400 800 the vertical axis is the void ratio, Load [kPa]

Find: CC e Lab Test Data e Load [kPa] Load [kPa] 0.919 6.25 0.900 0.890 0.868 0.825 0.771 0.687 0.572 0.463 Load [kPa] 6.25 12.5 25 50 100 200 400 800 And the horizontal axis is the load. This horizontal axis is plotted on a log scale, and the units of load for this problem, are in kilopascals. Load [kPa]

Find: CC e Lab Test Data e Load [kPa] 0.9 0.8 0.7 0.6 0.5 0.4 1 10 100 0.919 0.900 0.890 0.868 0.825 0.771 0.687 0.572 0.463 Load [kPa] 6.25 12.5 25 50 100 200 400 800 0.9 0.8 0.7 0.6 So we plot our data points. 0.5 0.4 1 10 100 1,000 Load [kPa]

Find: CC e Lab Test Data e Load [kPa] 0.9 0.8 0.7 0.6 0.5 0.4 1 10 100 0.919 0.900 0.890 0.868 0.825 0.771 0.687 0.572 0.463 Load [kPa] 6.25 12.5 25 50 100 200 400 800 0.9 0.8 0.7 0.6 --- 0.5 0.4 1 10 100 1,000 Load [kPa]

Find: CC e Lab Test Data e Load [kPa] 0.9 0.8 0.7 0.6 0.5 0.4 1 10 100 0.919 0.900 0.890 0.868 0.825 0.771 0.687 0.572 0.463 Load [kPa] 6.25 12.5 25 50 100 200 400 800 0.9 0.8 0.7 0.6 Keep in mind, this drawing is not to scale 0.5 0.4 1 10 100 1,000 Load [kPa]

Find: CC e Lab Test Data e Load [kPa] 0.9 0.8 0.7 0.6 0.5 0.4 1 10 100 0.919 0.900 0.890 0.868 0.825 0.771 0.687 0.572 0.463 Load [kPa] 6.25 12.5 25 50 100 200 400 800 0.9 0.8 0.7 0.6 --- 0.5 0.4 1 10 100 1,000 Load [kPa]

Find: CC e Lab Test Data e Load [kPa] 0.9 0.8 0.7 0.6 0.5 0.4 1 10 100 0.919 0.900 0.890 0.868 0.825 0.771 0.687 0.572 0.463 Load [kPa] 6.25 12.5 25 50 100 200 400 800 0.9 0.8 0.7 0.6 --- 0.5 0.4 1 10 100 1,000 Load [kPa]

Find: CC e Lab Test Data e Load [kPa] 0.9 0.8 0.7 0.6 0.5 0.4 1 10 100 0.919 0.900 0.890 0.868 0.825 0.771 0.687 0.572 0.463 Load [kPa] 6.25 12.5 25 50 100 200 400 800 0.9 0.8 0.7 0.6 --- 0.5 0.4 1 10 100 1,000 Load [kPa]

Find: CC e Lab Test Data e Load [kPa] 0.9 0.8 0.7 0.6 0.5 0.4 1 10 100 0.919 0.900 0.890 0.868 0.825 0.771 0.687 0.572 0.463 Load [kPa] 6.25 12.5 25 50 100 200 400 800 0.9 0.8 0.7 0.6 --- 0.5 0.4 1 10 100 1,000 Load [kPa]

Find: CC e Lab Test Data e Load [kPa] 0.9 0.8 0.7 0.6 0.5 0.4 1 10 100 0.919 0.900 0.890 0.868 0.825 0.771 0.687 0.572 0.463 Load [kPa] 6.25 12.5 25 50 100 200 400 800 0.9 0.8 0.7 0.6 --- 0.5 0.4 1 10 100 1,000 Load [kPa]

Find: CC e Lab Test Data e Load [kPa] 0.9 0.8 0.7 0.6 0.5 0.4 1 10 100 0.919 0.900 0.890 0.868 0.825 0.771 0.687 0.572 0.463 Load [kPa] 6.25 12.5 25 50 100 200 400 800 0.9 0.8 0.7 0.6 Once we’ve plotted all the points, we can compute the compression index, 0.5 0.4 1 10 100 1,000 Load [kPa]

Find: CC e Lab Test Data e Load [kPa] 0.9 0.8 0.7 0.6 0.5 0.4 1 10 100 0.919 0.900 0.890 0.868 0.825 0.771 0.687 0.572 0.463 Load [kPa] 6.25 12.5 25 50 100 200 400 800 0.9 0.8 0.7 0.6 which is the slope of the best fit line formed by the data points, at loading stresses greater than the preconsolidation stress. 0.5 0.4 1 10 100 1,000 Load [kPa]

σ’p Find: CC e Lab Test Data e Load [kPa] 0.9 0.8 0.7 0.6 0.5 0.4 1 10 0.919 0.900 0.890 0.868 0.825 0.771 0.687 0.572 0.463 Load [kPa] 6.25 12.5 25 50 100 200 400 800 0.9 0.8 0.7 0.6 So, if the preconsolidation stress is somewhere in here, 0.5 0.4 1 10 100 1,000 Load [kPa]

σ’p Find: CC e log 10 CC Lab Test Data e Load [kPa] 0.9 0.8 0.7 0.6 0.919 0.900 0.890 0.868 0.825 0.771 0.687 0.572 0.463 Load [kPa] 6.25 12.5 25 50 100 200 400 800 0.9 log 10 0.8 0.7 CC 0.6 we’re interested in the magnitude of the slope of the best fit line along these last three, or four, data points. Where log base 10 of 10, is equal to 1. 0.5 0.4 1 10 100 1,000 Load [kPa]

σ’p Find: CC e 1 CC Lab Test Data e Load [kPa] 0.9 0.8 0.7 0.6 0.5 0.4 0.919 0.900 0.890 0.868 0.825 0.771 0.687 0.572 0.463 Load [kPa] 6.25 12.5 25 50 100 200 400 800 0.9 1 0.8 0.7 CC 0.6 Suppose the best fit line passes most closely --- 0.5 0.4 1 10 100 1,000 Load [kPa]

σ’p Find: CC e 1 CC Lab Test Data e Load [kPa] 0.9 0.8 0.7 0.6 0.5 0.4 0.919 0.900 0.890 0.868 0.825 0.771 0.687 0.572 0.463 Load [kPa] 6.25 12.5 25 50 100 200 400 800 0.9 1 0.8 0.7 CC 0.6 through the two data points at loads of 200 and 400 kilopascals. 0.5 0.4 1 10 100 1,000 Load [kPa]

σ’p Find: CC e 1 CC e 0.9 0.8 0.7 Load [kPa] 0.6 0.5 0.4 1 10 100 0.687 0.572 Load [kPa] 200 400 0.6 We can compute the compression index, 0.5 0.4 1 10 100 1,000 Load [kPa]

σ’p Find: CC CC= e 1 CC e e400-e200 400 log 200 0.9 0.8 0.7 Load [kPa] 0.687 0.572 Load [kPa] 200 400 0.6 by computing the slope of the line through these two points. 0.5 0.4 1 10 100 1,000 Load [kPa]

σ’p Find: CC CC= e 1 CC=0.382 CC e e400-e200 400 log 200 0.9 0.8 0.7 0.687 0.572 Load [kPa] 200 400 0.6 The compression index is 0.382. [pause] 0.5 0.4 1 10 100 1,000 Load [kPa]

σ’p Find: CC CC= e 1 CC=0.382 CC e e400-e200 400 0.03 0.07 C) 0.38 log 200 0.9 1 0.8 CC=0.382 0.7 CC e 0.687 0.572 Load [kPa] 200 400 0.6 Returning to our possible solutions, 0.5 0.4 1 10 100 1,000 Load [kPa]

σ’p Find: CC CC= e 1 CC=0.382 AnswerC CC e e400-e200 400 0.03 0.07 log 200 0.9 1 0.8 CC=0.382 AnswerC 0.7 CC e 0.687 0.572 Load [kPa] 200 400 0.6 the answer is C. [pause] Now, if the problem happened to ask for the recompression index, 0.5 0.4 1 10 100 1,000 Load [kPa]

σ’p Find: CR e Lab Test Data e Load [kPa] 0.9 0.8 0.7 0.6 0.5 0.4 1 10 0.919 0.900 0.890 0.868 0.825 0.771 0.687 0.572 0.463 Load [kPa] 6.25 12.5 25 50 100 200 400 800 0.9 0.8 0.7 0.6 not the compression index, the same method can be used. 0.5 0.4 1 10 100 1,000 Load [kPa]

σ’p Find: CR e Lab Test Data e Load [kPa] 0.9 0.8 0.7 0.6 0.5 0.4 1 10 0.919 0.900 0.890 0.868 0.825 0.771 0.687 0.572 0.463 Load [kPa] 6.25 12.5 25 50 100 200 400 800 0.9 0.8 0.7 0.6 the only difference would be, we’d solve for the magnitude of the slope --- 0.5 0.4 1 10 100 1,000 Load [kPa]

σ’p Find: CR e 1 CR Lab Test Data e Load [kPa] 0.9 0.8 0.7 0.6 0.5 0.4 0.919 0.900 0.890 0.868 0.825 0.771 0.687 0.572 0.463 Load [kPa] 6.25 12.5 25 50 100 200 400 800 1 0.9 CR 0.8 0.7 0.6 of the best line passing through the data points with stress values less than the preconcolidation stress. 0.5 0.4 1 10 100 1,000 Load [kPa]

σ’p Find: CR e 1 CR Lab Test Data e Load [kPa] 0.9 0.8 0.7 0.6 0.5 0.4 0.919 0.900 0.890 0.868 Load [kPa] 6.25 12.5 25 1 0.9 CR 0.8 0.7 0.6 If we assume a line passing through the two data points at loads of 6.25 and 12.5 kilopascals is most parallel the best fit line, 0.5 0.4 1 10 100 1,000 Load [kPa]

σ’p Find: CR e 1 CR e12.5-e6.25 CR= Lab Test Data e 12.5 log 6.25 0.919 0.900 0.890 0.868 Load [kPa] 6.25 12.5 25 1 0.9 CR 0.8 0.7 e12.5-e6.25 CR= 0.6 we can plug the appropriate numbers into our equation, 12.5 log 0.5 6.25 0.4 1 10 100 1,000 Load [kPa]

σ’p Find: CR e 1 CR e12.5-e6.25 CR= Lab Test Data e 12.5 log 6.25 0.919 0.900 0.890 0.868 Load [kPa] 6.25 12.5 25 1 0.9 CR 0.8 0.7 e12.5-e6.25 CR= 0.6 And solve for a recompression index value of 0.033. 12.5 log 0.5 6.25 0.4 CR=0.033 1 10 100 1,000 Load [kPa]

( ) ? γclay=53.1[lb/ft3] Index σ’v = Σ γ d H*C σfinal ρcn= log Find: σ’v ρc d = 30 feet (1+wc)*γw wc+(1/SG) σ’v = Σ γ d d Sand 10 ft γT=100 [lb/ft3] 100 [lb/ft3] 10 [ft] 20 ft Clay = γsand dsand +γclay dclay A W S V [ft3] W [lb] 40 ft text wc = 37% ? Δh 20 [ft] (5 [cm])2 * π/4 ( ) H*C σfinal ρcn= 1+e σinitial log ‘