EE359 – Lecture 8 Outline Announcements Capacity of Fading channels

Slides:



Advertisements
Similar presentations
نیمسال اوّل افشین همّت یار دانشکده مهندسی کامپیوتر مخابرات سیّار (626-40) ظرفیت انتقال اطلاعات.
Advertisements

EE359 – Lecture 8 Outline Capacity of Fading channels Fading Known at TX and RX Optimal Rate and Power Adaptation Channel Inversion with Fixed Rate Capacity.
Wireless Modulation Schemes
The Impact of Channel Estimation Errors on Space-Time Block Codes Presentation for Virginia Tech Symposium on Wireless Personal Communications M. C. Valenti.
EE359 – Lecture 10 Outline Announcements: Project proposals due this Friday at 5pm (post, link) Midterm will be Nov. 7, 6-8pm, Room TBD, no HW due.
EE359 – Lecture 9 Outline Announcements: Project proposals due this Friday at 5pm; create website Midterm date: Thurs Nov. 7, 5:30-7:30 or 6-8pm? Practice.
EE359 – Lecture 10 Outline Announcements: Project proposals due today at 5pm (post, link) Midterm will be Nov. 4, 6-8pm, Room TBD, no HW due that.
Capacity of Wireless Channels
EE359 – Lecture 7 Outline Multipath Intensity Profile Doppler Power Spectrum Shannon Capacity Capacity of Flat-Fading Channels Fading Statistics Known.
EE359 – Lecture 16 Outline Announcements: HW due Friday MT announcements Rest of term announcements MIMO Diversity/Multiplexing Tradeoffs MIMO Receiver.
EE359 – Lecture 16 Outline Announcements: HW due Thurs., last HW will be posted Thurs., due 12/4 (no late HWs) Friday makeup lecture 9:30-10:45 in Gates.
Outline Transmitters (Chapters 3 and 4, Source Coding and Modulation) (week 1 and 2) Receivers (Chapter 5) (week 3 and 4) Received Signal Synchronization.
Three Lessons Learned Never discard information prematurely Compression can be separated from channel transmission with no loss of optimality Gaussian.
EE360: Lecture 9 Outline Multiuser OFDM Announcements: Project abstract due next Friday Multiuser OFDM Adaptive Techniques “OFDM with adaptive subcarrier,
ECE 776 Information Theory Capacity of Fading Channels with Channel Side Information Andrea J. Goldsmith and Pravin P. Varaiya, Professor Name: Dr. Osvaldo.
EE359 – Lecture 12 Outline Announcements Midterm announcements No HW next week (practice MTs) Maximal Ratio Combining MGF Approach to MRC Performance Equal.
EE359 – Lecture 12 Outline Announcements Midterm announcements No HW next week (practice MTs) Maximal Ratio Combining MGF Approach to MRC Performance Transmit.
EE359 – Lecture 15 Outline Announcements: HW due Friday MIMO Channel Decomposition MIMO Channel Capacity MIMO Beamforming Diversity/Multiplexing Tradeoffs.
EE359 – Lecture 12 Outline Announcements Midterm announcements No HW next week (practice MTs) Combining Techniques Maximal Ratio Combining MGF Approach.
ECE 480 Wireless Systems Lecture 14 Problem Session 26 Apr 2006.
EE359 – Lecture 13 Outline Annoucements Midterm announcements No HW this week (study for MT; HW due next week) Midterm review Introduction to adaptive.
Transmit Diversity with Channel Feedback Krishna K. Mukkavilli, Ashutosh Sabharwal, Michael Orchard and Behnaam Aazhang Department of Electrical and Computer.
EE 6332, Spring, 2014 Wireless Communication Zhu Han Department of Electrical and Computer Engineering Class 11 Feb. 19 th, 2014.
EE359 – Lecture 15 Outline Introduction to MIMO Communications MIMO Channel Decomposition MIMO Channel Capacity MIMO Beamforming Diversity/Multiplexing.
EE359 – Lecture 14 Outline Announcements: HW posted tomorrow, due next Thursday Will send project feedback this week Practical Issues in Adaptive Modulation.
Adaphed from Rappaport’s Chapter 5
EE359 – Lecture 13 Outline Adaptive MQAM: optimal power and rate Finite Constellation Sets Practical Constraints Update rate Estimation error Estimation.
Part 3: Channel Capacity
ECE 4710: Lecture #13 1 Bit Synchronization  Synchronization signals are clock-like signals necessary in Rx (or repeater) for detection (or regeneration)
EE359 – Lecture 12 Outline Combining Techniques
EE359 – Lecture 15 Outline Announcements: HW posted, due Friday MT exam grading done; l Can pick up from Julia or during TA discussion section tomorrow.
EE359 – Lecture 12 Outline Announcements Midterm announcements HW 5 due Friday, 11/4, at noon (no late HWs) No HW next week (work on projects) MGF Approach.
EE359 – Lecture 9 Outline Linear Modulation Review
Single carrier  Multicarrier  OFDM Single Carrier - ISI, Receiver complexity  ISI, Bit rate limitation Multi-carrier - Negligible ISI, Approximately.
EE359 – Lecture 16 Outline Announcements Proposals due this Friday, 5pm (create website, url) HW 7 posted today, due 12/1 TA evaluations: 10 bonus.
Midterm Review Midterm only covers material from lectures and HWs
EE359 – Lecture 11 Outline Announcements Class project links posted (please check). Will have comments back this week. Midterm announcements No HW next.
EE359 – Lecture 10 Outline Average P s (P b ) MGF approach for average P s Combined average and outage P s P s due to Doppler ISI P s due to ISI.
Channel Capacity.
Multiple Antennas.
EE359 – Lecture 13 Outline Annoucements Midterm announcements No HW this week (study for MT; HW due next week) Introduction to adaptive modulation Variable-rate.
EE359 – Lecture 16 Outline ISI Countermeasures Multicarrier Modulation
EE359 – Lecture 14 Outline Announcements
EE359 – Lecture 15 Outline Announcements: MIMO Channel Capacity
EE359 – Lecture 14 Outline Practical Issues in Adaptive Modulation
EE359 – Lecture 8 Outline Capacity of Flat-Fading Channels
EE359 – Lecture 11 Outline Doppler and ISI Performance Effects
Advanced Wireless Networks
EE359 – Lecture 12 Outline Maximal Ratio Combining
EE359 – Lecture 11 Outline Announcements
EE359 – Lecture 13 Outline Announcements
EE359 – Lecture 15 Outline Announcements: MIMO Channel Capacity
Midterm Review Midterm only covers material from lectures and HWs
EE359 – Lecture 12 Outline Announcements Transmit Diversity
Wireless Communication Channel Capacity
Wireless Communication Channel Capacity
EE359 – Lecture 13 Outline Announcements
EE359 – Lecture 9 Outline Announcements: Linear Modulation Review
EE359 – Lecture 17 Outline Announcements Review of Last Lecture
EE359 – Lecture 11 Outline Introduction to Diversity
EE359 – Lecture 9 Outline Linear Modulation Review
EE359 – Lecture 7 Outline Announcements: Multipath Intensity Profile
EE359 – Lecture 10 Outline Announcements: MGF approach for average Ps
EE359 – Lecture 10 Outline Announcements: Average Ps (Pb)
EE359 – Lecture 14 Outline Announcements:
EE359 – Lecture 7 Outline Announcements: Shannon Capacity
EE359 – Lecture 10 Outline Announcements: Average Ps (Pb)
Midterm Review Midterm only covers material from lectures and HWs
EE359 – Lecture 7 Outline Shannon Capacity
EE359 – Lecture 11 Outline Announcements Introduction to Diversity
Presentation transcript:

EE359 – Lecture 8 Outline Announcements Capacity of Fading channels OHs next week: TTh 11:15-12, 1:20-1:50 outside this room Project proposals due next Fri 10/28; recommend meeting MT Nov. 10 6-8pm, details provided next week Capacity of Fading channels Recap Optimal Rate/Power Adaptation with TX/RX CSI Channel Inversion with Fixed Rate Capacity of Freq. Selective Fading Channels Linear Digital Modulation Review Performance of Linear Modulation in AWGN

Review of Last Lecture Channel Capacity Maximum data rate that can be transmitted over a channel with arbitrarily small error Capacity of AWGN Channel: Blog2[1+g] bps g=Pr/(N0B) is the receiver SNR Capacity of Flat-Fading Channels Nothing known: capacity typically zero Fading Statistics Known (few results) Fading Known at RX (average capacity)

Review of Last Lecture (ctd) Capacity in Flat-Fading: g known at TX/RX Optimal Rate and Power Adaptation The instantaneous power/rate only depend on p(g) through g0 Waterfilling 1 g g0

Channel Inversion Fading inverted to maintain constant SNR Simplifies design (fixed rate) Greatly reduces capacity Capacity is zero in Rayleigh fading Truncated inversion Invert channel above cutoff fade depth Constant SNR (fixed rate) above cutoff Cutoff greatly increases capacity Close to optimal

Capacity in Flat-Fading Rayleigh Log-Normal

Frequency Selective Fading Channels For time-invariant channels, capacity achieved by water-filling in frequency Capacity of time-varying channel unknown Approximate by dividing into subbands Each subband has width Bc (like MCM/OFDM). Independent fading in each subband Capacity is the sum of subband capacities 1/|H(f)|2 Bc P f

Review of Linear Digital Modulation Signal over ith symbol period: Pulse shape g(t) typically Nyquist Signal constellation defined by (si1,si2) pairs Can be differentially encoded M values for (si1,si2)log2 M bits per symbol Ps depends on Minimum distance dmin (depends on gs) # of nearest neighbors aM Approximate expression: Standard/alternate Q function

Main Points Channel inversion practical, but should truncate or get a large capacity loss Capacity of wideband channel obtained by breaking up channel into subbands Similar to multicarrier modulation Linear modulation dominant in high-rate wireless systems due to its spectral efficiency Ps approximation in AWGN: Alternate Q function useful in diversity analysis