Chandraによる SN1006衝撃波面の詳細観測

Slides:



Advertisements
Similar presentations
Table of Contents Introduction Methods Results and discussion Summary
Advertisements

(2) Profile of the Non-Thermal Filaments of SNRs =>High Energy Particle Acceleration =>High Energy Particle Acceleration In all the SNRs & GC Non Thermal.
Astro-E2 target: The Galactic Center Red: 1-3 keV Green: 3-5 keV Blue: 5-8 keV Sgr B2 Wang et al Yoshitomo Maeda Hiroshi Murakami 2 degree The Arches.
マグネター研究の現状 ・観測のまとめ ・エネルギー源 ・太陽フレアモデルとの比較 ・定常 X 線・ γ 線の放射モデル ・ QED 効果 ・ QPO ・今後の課題.
Rie Yoshii ( RIKEN/Tokyo Univ. of Science) すざくで観測した N103B Observation of N103B by Suzaku 〜 together with SNR and SNR (type Ia SNRs.
RCW86, Vela Jr., W28 に付随する分 子雲 福井 康雄 March 13, Nagoya.
概要 2009 年 10 月 23 日に、いて座に出現した X 線新星 (XTE J ) を、出現から消滅まで 全天 X 線監視装置 MAXI (マキシ)で観測したところ、 新種のブラックホール新星であることが判明した。 従来のブラックホールを、 多量のガスを一気に飲み込む「肉食系」と.
時間的に変化する信号. 普通の正弦波 は豊富な情報を含んでいません これだけではラジオのような複雑な情報 を送れない 振幅 a あるいは角速度 ω を時間的に変化 させて情報を送る.
つくばだいがくについて 芸術専門学群のこと. 筑波大学ってこんなところ 東京教育大学を前身とする大学で、その 創立は日本で最も古い大学のひとつ。 大学の敷地面積は日本で二番目に広い大 学で、やたら坂が多い。移動時間が15分 しかないのに上り坂を三つ超えることがよ くある。
最近の太陽活動について 2011 年 9 月 16 日 ( 金 ) 於 : 京都大学記者クラブ 石井 貴子 ( いしい たかこ ) ( 京都大学理学研究科附属天文台・研究員 ) 浅井 歩 ( あさい あゆみ ) ( 京都大学宇宙総合学研究ユニット・特定助教 ) 一本 潔 ( いちもと きよし ) (
素数判定法 2011/6/20.
フーリエ係数の性質. どこまで足す? 理想的には無限大であるが、実際に はそれは出来ない これをフーリエ解析してみる.
1章 行列と行列式.
1 ヤマセに関する 2-3 の話題 (2) 川村 宏 東北大学大学院理学研究科 H 弘前大学.
Excelによる積分.
1 6.低次の行列式とその応用. 2 行列式とは 行列式とは、正方行列の特徴を表す一つのスカ ラーである。すなわち、行列式は正方行列からスカ ラーに写す写像の一種とみなすこともできる。 正方行列 スカラー(実数) の行列に対する行列式を、 次の行列式という。 行列 の行列式を とも表す。 行列式と行列の記号.
計算のスピードアップ コンピュータでも、sin、cosの計算は大変です 足し算、引き算、掛け算、割り算は早いです
信号測定. 正弦波 多くの場合正弦波は 0V の上下で振動する しかし、これでは AD 変換器に入れら れないので、オフ セットを調整して データを取った.
早坂忠裕(東北大学) 江口菜穂(九州大学)
Magnetic-field production by cosmic rays drifting upstream of SNR shocks Martin Pohl, ISU with Tom Stroman, ISU, Jacek Niemiec, PAN.
Bar-TOP における光の 群速度伝播の解析 名古屋大学 高エネルギー物理研究室 松石 武 (Matsuishi Takeru)
すざく衛星による広がったTeVγ線未同定天体の観測
1 高い時間分解能を持った マルチアノード型光電子増倍管の開発 名古屋大学 高エネルギー研究室 概要 光電子増倍管 L16 の開発目的 L16 の特徴 Multi-channel-photon-hit 時の時間分解能の悪化 Cross-talk 対策と対策成果 Summary ~ cross-talk.
Analog “ neuronal ” networks in early vision Koch and Yuille et al. Proc Academic National Sciences 1986.
日本物理学会第 62 回年次大会 すざく衛星による TeVγ 線天体 HESSJ の観測 内山秀樹、澤田真理、鶴剛、小山勝二 ( 京大理 ) 、 片桐秀明、山崎了 ( 広大理 ) 、 馬場彩、内山泰伸 (ISAS/JAXA) 、 郡和範 (Lancaster Univ.) 、森浩二 (
最も暗い TeV ガンマ線未同定天体 HESS J の X 線対応天体の発見 松本浩典 ( 名古屋大学理学部 ) 内山秀樹、鶴剛、小山勝二 ( 京大理 ) 、 Omar Tibolla (Univ. of Heidelberg)
TeV ガンマ線未同定天体 HESS J からの X 線放射の発見 松本浩典 ( 名古屋大 ) 、内山秀樹、鶴剛、小山勝二 ( 京都大 ) 、 Omar Tibolla ( University of Heidelberg) Abstract HESSJ は、銀河面上の.
銀河中心領域拡散 X 線放射 松本浩典 ( 名古屋大学 KMI 現象解析研究センター ). 内容 銀河中心 diffuse X 線放射 – 熱的放射 鉄の 6.7keV, 6.9 keV 輝線 – 銀河中心領域 (l~0deg, b~0deg) – バルジ領域 (l~0deg, b~1deg) –
すざく衛星による TeVγ 線天体 HESSJ の観測 “Dark Accelerator” 松本浩典 ( 京大理 ) 植野優 ( 東工大 ), 馬場彩 ( 理研 ), 兵藤義明、森英之、内山秀樹、鶴剛、 小山勝二 ( 京大理 ), 片岡淳 ( 東工大 ), 片桐秀明 ( 広島大 ),
CGC confronts LHC data 1. “Gluon saturation and inclusive hadron production at LHC” by E. Levin and A.H. Rezaeian, arXiv: [hep-ph] 4 May 2010.
Spectral analysis of non-thermal filaments in Cas A Miguel Araya D. Lomiashvili, C. Chang, M. Lyutikov, W. Cui Department of Physics, Purdue University.
実験5 規則波 C0XXXX 石黒 ○○ C0XXXX 杉浦 ○○ C0XXXX 大杉 ○○ C0XXXX 高柳 ○○ C0XXXX 岡田 ○○ C0XXXX 藤江 ○○ C0XXXX 尾形 ○○ C0XXXX 足立 ○○
Run2b シリコン検出 器 現在の SVX-II (内側3層)は 放射線損傷により Run2b 中に 著しく性能が劣化する Run2b シリコン検出器 日本の分担: 1512 outer axial sensors 648 outer stereo sensors ( 144 inner axial.
AKARI と Spitzer による 近傍銀河の星間ダストの研究 H. Kaneda (ISAS/JAXA) T. Suzuki, T. Onaka, I. Sakon, T. Nakagawa 特定領域研究会@名古屋大学 Jun 「近傍銀河における、星間ダスト( cool dust/warm.
Kitenet の解析 (110118) 九州大学 工学部 電気情報工学科 岡村研究室 久保 貴哉.
小島 肇  Windows ではアンチウイルスソフトウェアは 必須だが、「入れれば安心」というものでは ない  Mac, Linux における費用対効果はかなり低い  現時点ではマルウェアは流行っていないから  Windows を併用している場合は別.
Observational evidences of particle acceleration at SNRs Aya Bamba (RIKEN, Japan) and Suzaku team Suzaku Chandra.
「すざく」による SN1006 の観測 Suzaku observations of SN1006 Aya BAMBA (ISAS/JAXA)
Shock acceleration of cosmic rays Tony Bell Imperial College, London.
(RESCEU &IPMU ) 横山順一 Inflaton φ slow rollover Reheating V[φ] BEGINNING?? END?? Λ But little is known about the beginning and end of inflation. Slow-roll.
Cross-wavelength synergy: VSOP-2 & CTA projects M. Kino (NAOJ) On behalf of VSOP-2 Science Working Group 「高エネルギー宇宙物理学の将来と CTA 」 2010 Jan 9 宇宙線研.
Response of the Corona to Magnetic Activity in Underlying Plage Regions Ryutova, M., & Shine, R. 2004, ApJ, 606, 571 Plasma Seminar 2004 June 2 by Ayumi.
Problems in Space Physics 長井嗣信 東京工業大学. 磁気圏の未解決問題 「いつも同じ話をしている」 1.容易に解決できそうだが 2.何が観測的に問題なのか 3.今後どうすべきか.
バングラデシュにおける プレモンスーン期およびモンスーン 期の 降水の特徴 寺尾 徹 ( 大阪学院大学情報学部 ) 村田 文絵 ( 地球環境学研究所 ) 林 泰一 ( 京都大学防災研究所 ) P177.
First It’s Hot & Then It’s Not Extremely Fast Acceleration of Cosmic Rays In A Supernova Remnant Peter Mendygral Journal Club November 1, 2007.
Multi-Zone Modeling of Spatially Non-uniform Cosmic Ray Sources Armen Atoyan Concordia University, Montreal FAA60 Barcelona, 7 November 2012.
MULTI3D T. Anan. MULTI3D MULTI3D (Botnen 1997) Leenaarts & Carlsson 2009; Leenaarts et al – MPI-parallelized, domain-decomposed version.
1 Observation Of High-Energy Neutrino Reaction And The Existence Of Two Kinds Of Neutrinos 高エネルギーニュートリノの観測と二種類のニュートリノの存在 G. T. Danby et al. Phys. Rev.
「すざく」 による超新星残骸 RCW86 の観測 Suzaku Observations of Supernova Remnant RCW86 山口 弘悦 (理研) Hiroya Yamaguchi (RIKEN) ← Preliminary image of the Suzaku mapping observation.
HES-HKS & KaoS meeting. Contents Different distorted initial matrices Distorted matrix sample 6 (dist6) Distorted matrix sample 7 (dist7) Distorted matrix.
The “youngest” Ia SNR in the Galaxy. The best to study early phase of Type Ia Cosmic Ray acceleration at the Shell The best to study the cosmic ray origin.
天の川銀河の中心の星の運動 海王星くらいの 軌道で(5km/秒) 5000km/秒以上 太陽の400万倍 も重いブラック ホールがある.
RESISTIVE EMERGENCE OF UNDULATORY FLUX TUBES
Koyama and Bamba Non-thermal Filaments from SNR. 1.Introduction of X-ray study of cosmic ray acceleration in SNRs 2.Chandra observation of SN Discussion.
京大天体核 D3 山崎 了 共同研究者 : 井岡 邦仁 ( 阪大 ) 、中村 卓史 ( 京大 ) Ref. Yamazaki et al., astro-ph/
Diffusive shock acceleration: an introduction
Cosmic-ray acceleration by compressive plasma fluctuations in supernova shells Ming Zhang Department of Physics and Space Sciences, Florida Institute.
V.N.Zirakashvili, V.S.Ptuskin
Investigation of laser energy absorption by ablation plasmas
地球儀と様々な地図. 1 球体としての地球 こうした現象はあることをイ メージすると理解できる。
Fermi Collaboration Meeting
A large XMM-Newton project on SN 1006
SN 1006 Extract spectra for each region..
A large XMM-Newton project on SN 1006
Who accelerate cosmic rays
Diffusive Shock Acceleration
Suzaku perspective on the Galactic Center
Hironori Matsumoto (Kyoto University)
X-rays from the Galactic Center
Our Galactic Center and its Environmemt K. Koyama A. Senda
Presentation transcript:

Chandraによる SN1006衝撃波面の詳細観測 SN 1006 with ASCA 馬場 彩、山崎 了、植野 優、小山 勝二 (京都大学)

1. Introduction “How are cosmic rays accelerated up to TeV?” Basic concept: Diffusive Shock Acceleration (DSA) (Bell 1978; Blandford & Ostriker 1978…) Koyama et al.(1995) Discovery of synchrotron X-rays from the shell of SN 1006 SN1006: type Ia d=1.8kpc 10´ Next problem: More realistic model “How do the non-thermal electrons distribute on the shock?” Spatial and spectral studies with Chandra

1.2. Chandraの特長 Chandra ACIS-Sで観測 (68 ksec) 高空間分解能 位置分解能 ~ 0.5″! → 衝撃波前後面の詳細構造が分かる 2. 低エネルギーまで感度あり 0.3 keV – 10.0 keVに感度 (ACIS-S) → 酸素のラインも見ることが出来る (特に低温プラズマの診断に有利) Chandra ACIS-Sで観測 (68 ksec)

2.1. Image and spectrum thermal non-thermal extended sharp outward = upstream 2.1. Image and spectrum Energy (keV) 1 5 0.3 inward = downstream thermal extended non-thermal sharp SN1006 NE shell How large are the scale length of non-thermal component? 0.3 – 2.0 keV 2.0 – 10.0 keV

2.2. Analyses method We want to know: upstream downstream the scale length of non-thermal component in outward = upstream inward = downstream 40 shock counts 20 wu wd 2.0 – 10.0 keV arcsec 20 40

2.3. Fitting results Upstream 0.04 pc 0.01 pc Downstream 0.2 pc 2 – 10 keV Upstream 0.04 pc 0.01 pc Downstream 0.2 pc 0.05 pc Mean value………………. Minimum value……….…..

3.1. Discussion (1) the observed and derived parameters Observed parameters: Derived parameters from DSA: Emax , Bd 1. The wide band spectrum nbreak = 2.6 x1017 Hz +0.7 -0.7 EmaxBd0.5 = 0.37 erg G0.5 +0.04 -0.06 2. The diffusion coefficient K wu = Ku uu wd = Kd ud K = xEmaxc 3eB x ~ > 1 B dB Emax Bd > 6.4x106erg/G uu = 4ud = us = 2600 km/s (Winkler & Long 1997) 3. The acceleration and loss tacc = = 1010s 4(Ku+Kd) us2 tacc < tsync EmaxBd2 < 6.5x10-8 erg G2 tsync= 6.3x102Emax-1Bd-2

3.2. Discussion (2) the Emax – Bd relation log (Emax/eV) 14 13 log (Bd/G) -6 -3 from nbreak from Kd and x from tacc Emax ~ 30 TeV Bd ~ 30 mG xd < 1.3 shock Bd ? Highly turbulent magnetic field! downstream e-

3.3. Discussion (3) in upstream Emax ~ 30 TeV Bd ~ 30 mG Bd < Bu < Bd 1 4 7 mG < Bu < 30 mG The gyro radius in upstream rg: Emax eBu 0.001 pc < rg = < 0.005 pc ~ wumin = 0.01 pc ! shock Conventional DSA cannot explain the result. Bu Bd the magnetic field in upstream nearly parallel to shock plane the new acceleration mechanism e.g. Surfing acceleration (Hoshino & Shimada 2002) downstream Further analyses of SN 1006 and other SNRs

4. Other SNRs (1) Young SNRs Cas A Kepler Tycho 0.06pc 0.04pc 0.01pc 0.007pc 0.02pc 0.02pc

4. Other SNRs(2) middle aged SNRs RCW86 0.5pc 0.1pc 0.6pc 0.08pc

5. Summary We resolved non-thermal emission from thermal plasma in spatially and spectroscopically. 2. The non-thermal filaments have very small scale length! 3. The conventional DSA should be revised to explain the small scale length. the magnetic field parallel to shock plane in upstream? new acceleration mechanism? or 4. The analyses of other SNRs is important!