Chapter 3 : Random Variables

Slides:



Advertisements
Similar presentations
Data Analysis Class 4: Probability distributions and densities.
Advertisements

Special random variables Chapter 5 Some discrete or continuous probability distributions.
Some Continuous Probability Distributions By: Prof. Gevelyn B. Itao.
Probability Distribution
Review of Basic Probability and Statistics
Chapter 1 Probability Theory (i) : One Random Variable
Probability and Statistics for Engineers (ENGC 6310) Review.
Lecture 2 Discrete Random Variables Section
Jean Walrand EECS – U.C. Berkeley
Today Today: Chapter 5 Reading: –Chapter 5 (not 5.12) –Suggested problems: 5.1, 5.2, 5.3, 5.15, 5.25, 5.33, 5.38, 5.47, 5.53, 5.62.
1 Engineering Computation Part 6. 2 Probability density function.
Samples vs. Distributions Distributions: Discrete Random Variable Distributions: Continuous Random Variable Another Situation: Sample of Data.
CSE 221: Probabilistic Analysis of Computer Systems Topics covered: Continuous random variables Uniform and Normal distribution (Sec. 3.1, )
Probability and Statistics Review
Engineering Probability and Statistics - SE-205 -Chap 3 By S. O. Duffuaa.
A random variable that has the following pmf is said to be a binomial random variable with parameters n, p The Binomial random variable.
2. Random variables  Introduction  Distribution of a random variable  Distribution function properties  Discrete random variables  Point mass  Discrete.
Ya Bao Fundamentals of Communications theory1 Random signals and Processes ref: F. G. Stremler, Introduction to Communication Systems 3/e Probability All.
Chapter 21 Random Variables Discrete: Bernoulli, Binomial, Geometric, Poisson Continuous: Uniform, Exponential, Gamma, Normal Expectation & Variance, Joint.
4-1 Continuous Random Variables 4-2 Probability Distributions and Probability Density Functions Figure 4-1 Density function of a loading on a long,
Distribution Function properties. Density Function – We define the derivative of the distribution function F X (x) as the probability density function.
CIS 2033 based on Dekking et al. A Modern Introduction to Probability and Statistics, 2007 Instructor Longin Jan Latecki Chapter 7: Expectation and variance.
Moment Generating Functions 1/33. Contents Review of Continuous Distribution Functions 2/33.
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL Review of Exam 2 Sections 4.6 – 5.6 Jiaping Wang Department of Mathematical Science 04/01/2013, Monday.
Chapter 5 Statistical Models in Simulation
Further distributions
Statistics for Engineer Week II and Week III: Random Variables and Probability Distribution.
Moment Generating Functions
Random Variables and Stochastic Processes –
Random Variables. A random variable X is a real valued function defined on the sample space, X : S  R. The set { s  S : X ( s )  [ a, b ] is an event}.
Discrete Probability Distributions. Random Variable Random variable is a variable whose value is subject to variations due to chance. A random variable.
Probability & Statistics I IE 254 Summer 1999 Chapter 4  Continuous Random Variables  What is the difference between a discrete & a continuous R.V.?
Copyright © 2010 Pearson Addison-Wesley. All rights reserved. Chapter 6 Some Continuous Probability Distributions.
4-1 Continuous Random Variables 4-2 Probability Distributions and Probability Density Functions Figure 4-1 Density function of a loading on a long,
Math b (Discrete) Random Variables, Binomial Distribution.
Probability Refresher COMP5416 Advanced Network Technologies.
IE 300, Fall 2012 Richard Sowers IESE. 8/30/2012 Goals: Rules of Probability Counting Equally likely Some examples.
Probability and Statistics Dr. Saeid Moloudzadeh Uniform Random Variable/ Normal Random Variable 1 Contents Descriptive Statistics Axioms.
Chapter 3 Statistical Models or Quality Control Improvement.
1 1 Slide Continuous Probability Distributions n The Uniform Distribution  a b   n The Normal Distribution n The Exponential Distribution.
Copyright © 2010 Pearson Addison-Wesley. All rights reserved. Chapter 3 Random Variables and Probability Distributions.
Chapter 4 Continuous Random Variables and Probability Distributions  Probability Density Functions.2 - Cumulative Distribution Functions and E Expected.
Unit 4 Review. Starter Write the characteristics of the binomial setting. What is the difference between the binomial setting and the geometric setting?
Discrete Probability Distributions Chapter 4. § 4.3 More Discrete Probability Distributions.
Probability and Statistics Dr. Saeid Moloudzadeh Poisson Random Variable 1 Contents Descriptive Statistics Axioms of Probability Combinatorial.
Statistics -Continuous probability distribution 2013/11/18.
Random Variables By: 1.
4-1 Continuous Random Variables 4-2 Probability Distributions and Probability Density Functions Figure 4-1 Density function of a loading on a long,
Chapter 14 Fitting Probability Distributions
Random Variable 2013.
Chapter 4 Continuous Random Variables and Probability Distributions
IEE 380 Review.
Probability for Machine Learning
Useful Discrete Random Variables
AP Statistics: Chapter 7
Multinomial Distribution
5.6 The Central Limit Theorem
Moment Generating Functions
Probability & Statistics Probability Theory Mathematical Probability Models Event Relationships Distributions of Random Variables Continuous Random.
Moment Generating Functions
Probability Review for Financial Engineers
Lecture 5 b Faten alamri.
Useful Discrete Random Variable
Chapter 5 Some Discrete Probability Distributions.
Chapter 6 Some Continuous Probability Distributions.
Bernoulli Trials Two Possible Outcomes Trials are independent.
Statistical Models or Quality Control Improvement
1/2555 สมศักดิ์ ศิวดำรงพงศ์
PROBABILITY AND STATISTICS
Moments of Random Variables
Presentation transcript:

Chapter 3 : Random Variables 3.1 Notion of a Random Variable 2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

S => Sx Pk => Pk Mapping Outcomes Random Variable 2003/03/05 Chapter 3

Mapping 2003/03/05 Chapter 3

3.2 The Cumulative Distribution Function 2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

Three Types of Random Variables Discrete Random Variable Continuous Random Variable Random Variable of Mixed Type 2003/03/05 Chapter 3

cdf 2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

3.3 The Probability Density Function 2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

Discrete Random Variables 3.4 Some Important Random Variables Discrete Random Variables Bernoulli Random Variable Binomial Random Variable Geometric Random Variable Poisson Random Variable Continue Random Variables Uniform Random Variable Exponential Random Variable Gaussian (Normal) Random Variable Gamma Random Variable 2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

3.5 Functions of Random Variable 2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3

2003/03/05 Chapter 3