Volume 93, Issue 4, Pages e6 (February 2017)

Slides:



Advertisements
Similar presentations
Volume 86, Issue 5, Pages (June 2015)
Advertisements

Volume 79, Issue 6, Pages (September 2013)
Volume 54, Issue 6, Pages (June 2007)
Volume 7, Issue 1, Pages (April 2014)
Emmanuel Eggermann, Yves Kremer, Sylvain Crochet, Carl C.H. Petersen 
Mark E.J. Sheffield, Michael D. Adoff, Daniel A. Dombeck  Neuron 
Morphological Substrates for Parallel Streams of Corticogeniculate Feedback Originating in Both V1 and V2 of the Macaque Monkey  Farran Briggs, Caitlin W.
Volume 7, Issue 1, Pages (April 2014)
Volume 92, Issue 1, Pages (October 2016)
Cell-Type-Specific Sensorimotor Processing in Striatal Projection Neurons during Goal- Directed Behavior  Tanya Sippy, Damien Lapray, Sylvain Crochet,
Volume 84, Issue 5, Pages (December 2014)
Volume 49, Issue 6, Pages (March 2006)
Volume 86, Issue 4, Pages (May 2015)
Volume 86, Issue 4, Pages (May 2015)
In Vivo Measurement of Cell-Type-Specific Synaptic Connectivity and Synaptic Transmission in Layer 2/3 Mouse Barrel Cortex  Aurélie Pala, Carl C.H. Petersen 
Volume 81, Issue 4, Pages (February 2014)
Dynamic, Cell-Type-Specific Roles for GABAergic Interneurons in a Mouse Model of Optogenetically Inducible Seizures  Sattar Khoshkhoo, Daniel Vogt, Vikaas.
Daniel Meyer, Tobias Bonhoeffer, Volker Scheuss  Neuron 
Volume 49, Issue 1, Pages (January 2006)
Volume 24, Issue 13, Pages e5 (September 2018)
Hai-Yan He, Wanhua Shen, Masaki Hiramoto, Hollis T. Cline  Neuron 
Volume 23, Issue 4, Pages (April 2018)
Following Directions from the Retina to the Brain
Volume 18, Issue 11, Pages (March 2017)
Dante S. Bortone, Shawn R. Olsen, Massimo Scanziani  Neuron 
Euiseok J. Kim, Matthew W. Jacobs, Tony Ito-Cole, Edward M. Callaway 
Volume 96, Issue 4, Pages e5 (November 2017)
Volume 27, Issue 5, Pages (March 2017)
Odor Processing by Adult-Born Neurons
A Switching Observer for Human Perceptual Estimation
Circuit Mechanisms of a Retinal Ganglion Cell with Stimulus-Dependent Response Latency and Activation Beyond Its Dendrites  Adam Mani, Gregory W. Schwartz 
Volume 83, Issue 6, Pages (September 2014)
Tetsuya Koide, Yoichi Yabuki, Yoshihiro Yoshihara  Cell Reports 
Jason Jacoby, Yongling Zhu, Steven H. DeVries, Gregory W. Schwartz 
James G. Heys, Krsna V. Rangarajan, Daniel A. Dombeck  Neuron 
Volume 92, Issue 2, Pages (October 2016)
Nob Mice Wave Goodbye to Eye-Specific Segregation
A Pixel-Encoder Retinal Ganglion Cell with Spatially Offset Excitatory and Inhibitory Receptive Fields  Keith P. Johnson, Lei Zhao, Daniel Kerschensteiner 
SK2 Channel Modulation Contributes to Compartment-Specific Dendritic Plasticity in Cerebellar Purkinje Cells  Gen Ohtsuki, Claire Piochon, John P. Adelman,
Ju Tian, Naoshige Uchida  Neuron 
Volume 84, Issue 5, Pages (December 2014)
Benjamin Scholl, Daniel E. Wilson, David Fitzpatrick  Neuron 
Franziska Auer, Stavros Vagionitis, Tim Czopka  Current Biology 
Volume 74, Issue 2, Pages (April 2012)
Parallel Mechanisms Encode Direction in the Retina
Volume 60, Issue 4, Pages (November 2008)
Volume 13, Issue 10, Pages (December 2015)
Morphological Substrates for Parallel Streams of Corticogeniculate Feedback Originating in Both V1 and V2 of the Macaque Monkey  Farran Briggs, Caitlin W.
Structured Synaptic Connectivity between Hippocampal Regions
Sleep-Stage-Specific Regulation of Cortical Excitation and Inhibition
Volume 17, Issue 11, Pages (June 2007)
Ingrid Bureau, Gordon M.G Shepherd, Karel Svoboda  Neuron 
Benjamin Scholl, Daniel E. Wilson, David Fitzpatrick  Neuron 
Volume 88, Issue 4, Pages (November 2015)
Volume 71, Issue 6, Pages (September 2011)
A Hypothalamic Switch for REM and Non-REM Sleep
Tiago Branco, Kevin Staras, Kevin J. Darcy, Yukiko Goda  Neuron 
Ashkan Javaherian, Hollis T. Cline  Neuron 
Organization of Functional Long-Range Circuits Controlling the Activity of Serotonergic Neurons in the Dorsal Raphe Nucleus  Li Zhou, Ming-Zhe Liu, Qing.
Volume 64, Issue 5, Pages (December 2009)
Masayuki Matsumoto, Masahiko Takada  Neuron 
Structured Connectivity in Cerebellar Inhibitory Networks
James H. Marshel, Takuma Mori, Kristina J. Nielsen, Edward M. Callaway 
Xiaowei Chen, Nathalie L. Rochefort, Bert Sakmann, Arthur Konnerth 
Serkan Oray, Ania Majewska, Mriganka Sur  Neuron 
Volume 61, Issue 2, Pages (January 2009)
Volume 28, Issue 6, Pages e3 (March 2018)
Multisensory Integration in the Mouse Striatum
Volume 25, Issue 6, Pages (March 2015)
Juliana M. Rosa, Sabine Ruehle, Huayu Ding, Leon Lagnado  Neuron 
Presentation transcript:

Volume 93, Issue 4, Pages 767-776.e6 (February 2017) Different Modes of Visual Integration in the Lateral Geniculate Nucleus Revealed by Single-Cell-Initiated Transsynaptic Tracing  Santiago B. Rompani, Fiona E. Müllner, Adrian Wanner, Chi Zhang, Chiara N. Roth, Keisuke Yonehara, Botond Roska  Neuron  Volume 93, Issue 4, Pages 767-776.e6 (February 2017) DOI: 10.1016/j.neuron.2017.01.028 Copyright © 2017 The Author(s) Terms and Conditions

Figure 1 Single-Cell-Initiated Transsynaptic Tracing from LGN Principal Cells (A) Schematic of the experimental design. AAV expressing Cre-GFP was injected into V1 (left). A GFP-positive LGN cell was electroporated with a combination of three plasmids and Alexa-594 dye (middle). EnvA-SADΔG-mCherry rabies virus was injected into the LGN (right). (B) Two-photon image of a GFP-expressing LGN cell after electroporation (left, GFP only; middle, Alexa-594 only; right, combined; arrow, pipette). (C) TdTomato-expressing neuron in LGN, 3 days post-electroporation (left, whole brain; right, zoom-in to LGN; arrow, axon). (D) A cluster of ganglion cells in the retina 12 days after electroporation. Retina, with four indentations to flatten it, is outlined by dotted lines. (E) Ganglion cells of the cluster in (D) traced and color-coded based on morphological type. See Figure S1. Neuron 2017 93, 767-776.e6DOI: (10.1016/j.neuron.2017.01.028) Copyright © 2017 The Author(s) Terms and Conditions

Figure 2 LGN-Projecting Ganglion Cell Types Each row refers to a different type of ganglion cell observed in single-cell tracing. (A) Dendritic arbors of three example ganglion cells (only one for type 13). (B) Side projection of a representative ganglion cell (gray, antibody against ChAT; red dotted lines, ChAT strata). The boxes on the right represent the ten strata of the inner plexiform layer (black squares, dendrites of respective ganglion cell type; gray squares, ChAT strata). See Figure S2. Neuron 2017 93, 767-776.e6DOI: (10.1016/j.neuron.2017.01.028) Copyright © 2017 The Author(s) Terms and Conditions

Figure 3 Monocular Clusters of Presynaptic Ganglion Cells (A) Distribution of ganglion cell types in single-cell (gray) or bulk tracing (white). (B) Distribution of number of ganglion cell types per monocular cluster (gray) or per pair of binocular clusters (white, ipsi- and contralateral combined). (C) The deviation of measured number of ganglion cell types from what is expected by a random draw (ipsilateral and contralateral binocular clusters shown separately). p values from Monte-Carlo simulations, ∗∗p < 0.01, ∗∗∗p < 0.001; n.s., not significant. (D) A representative relay-mode cluster. (E) Reconstruction of the ganglion cells in (D). (F) Dendritic stratification of the ganglion cells in (D). Each column refers to one presynaptic ganglion cell. Number on black boxes refers to the corresponding ganglion cell type. (G) The distribution of ganglion cells in relay-mode clusters based on dendritic stratification. Strata 1 and 2, OFF-sustained; 3 and 4, OFF-transient; 6 and 7, ON-transient; 8 and 9, ON-sustained responses. (H) A representative combination-mode cluster. (I) Reconstruction of the ganglion cells in (G). (J) Dendritic stratification of the ganglion cells in (H). (K) The distribution of ganglion cells in combination-mode clusters based on dendritic stratification. Cells were counted in all layers in which they stratify (G and K). See Figures S3–S6. Neuron 2017 93, 767-776.e6DOI: (10.1016/j.neuron.2017.01.028) Copyright © 2017 The Author(s) Terms and Conditions

Figure 4 Binocular Clusters of Presynaptic Ganglion Cells (A) Representative binocular clusters of an LGN cell. (B) Dendritic stratification patterns of the ganglion cells in (A). (C) The distribution of ganglion cells in binocular clusters based on dendritic stratification; gray, ipsilateral; white, contralateral clusters. Cells were counted in all layers in which they stratify. (D) Pairwise comparison of ganglion cell type dominance between pairs of ipsilateral and contralateral clusters. (E) Comparison between the expected (black bars) and observed (red line) distribution of the mean Z score of absolute differences in ganglion cell count (|ipsilateral − contralateral|). Expected distribution based on binomial model. (F and G) Pairwise comparison of (F) number of ganglion cell types, and (G) Z scores of the number of ganglion cell types between pairs of ipsilateral and contralateral clusters. Red, c > i, more cells in the contralateral eye; black, i > c, more cells in ipsilateral eye. Blue lines in (G), mean Z scores. Lines connect corresponding cluster pairs (D, F, and G). (H) Pairwise comparison of the measured and expected number of ganglion cell types shared between an ipsilateral and corresponding contralateral cluster. Expected values are based on the random draw hypothesis with conditional probabilities to correct for reduced numbers of ganglion cell types ipsilaterally (Figure S8D). p values from Wilcoxon signed-rank test in (D) and (F) and Monte-Carlo simulations in (E) and (G) (two-sided) and (H) (left-tailed), ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001; n.s., not significant. See Figures S7 and S8. Neuron 2017 93, 767-776.e6DOI: (10.1016/j.neuron.2017.01.028) Copyright © 2017 The Author(s) Terms and Conditions