7. Edmonds-Karp Algorithm
Edmonds-Karp Algorithm flow 2 4 4 capacity G: 10 8 6 2 10 s 10 3 9 5 10 t Flow value = 0
Edmonds-Karp Algorithm flow 2 4 4 capacity G: 8 X 10 8 6 2 10 8 s 10 3 9 5 10 t Flow value = 0 2 4 4 residual capacity Gf: 10 8 6 2 10 s 10 3 9 5 10 t
Edmonds-Karp Algorithm 10 8 X 2 2 4 4 G: 8 2 10 8 6 2 10 10 s 10 3 9 5 10 t Flow value = 8 2 4 4 Gf: 8 2 8 6 2 10 s 10 3 9 5 2 t 8 4
G: Gf: 2 10 2 8 X 8 2 12 Flow value = 10 10 2 4 s 3 5 t 2 4 s 3 5 t 4 6 2 10 8 s 10 3 9 5 10 t 12 Flow value = 10 2 2 2 4 Gf: 2 10 8 6 2 8 s 10 3 9 5 2 t 8
2 2 4 4 G: 10 8 X 8 2 8 10 8 6 2 10 6 2 2 s 10 3 9 5 10 t 18 Flow value = 12 2 2 2 4 Gf: 2 10 8 6 2 8 s 8 3 7 5 10 t 2 2 6
10 9 X 2 3 2 4 4 G: 8 8 7 9 10 8 6 6 2 10 8 8 s 10 3 9 5 10 t 19 Flow value = 18 2 2 2 4 Gf: 8 10 8 6 2 2 s 2 3 1 5 10 t 8 8
3 2 4 4 G: 10 7 9 10 8 6 6 2 10 9 9 10 s 10 3 9 5 10 t Flow value = 19 3 2 1 4 Gf: 9 1 10 7 6 2 1 s 1 3 9 5 10 t 9
G: Gf: 3 10 9 7 6 9 9 10 Cut capacity = 19 Flow value = 19 9 9 2 4 s 3 8 6 6 2 10 9 9 10 s 10 3 9 5 10 t Cut capacity = 19 Flow value = 19 3 2 1 4 Gf: 9 1 10 7 6 2 1 s 1 3 9 5 10 t 9