Tandem Enzymatic Oxygenations in Biosynthesis of Epoxyquinone Pharmacophore of Manumycin-type Metabolites  Zhe Rui, Moriah Sandy, Brian Jung, Wenjun Zhang 

Slides:



Advertisements
Similar presentations
Volume 23, Issue 4, Pages (April 2016)
Advertisements

Volume 22, Issue 5, Pages v-vi (May 2015)
Volume 15, Issue 6, Pages (June 2008)
Volume 23, Issue 4, Pages (April 2016)
Volume 23, Issue 8, Pages (August 2016)
Volume 19, Issue 9, Pages (September 2012)
Volume 20, Issue 1, Pages (January 2013)
Song-Gil Lee, Jean Chmielewski  Chemistry & Biology 
Foundations for Directed Alkaloid Biosynthesis
Miglena Manandhar, John E. Cronan  Chemistry & Biology 
Nature’s Strategy for Catalyzing Diels-Alder Reaction
Recent Developments in G-Quadruplex Probes
Scratch n’ Screen for Inhibitors of Cell Migration
Adding Specificity to Artificial Transcription Activators
Volume 20, Issue 6, Pages (June 2013)
Tandem Modifications of an Epoxyquinone C7N Pharmacophore
Volume 13, Issue 11, Pages (November 2006)
Volume 23, Issue 4, Pages (April 2016)
Biosynthesis of Actinorhodin and Related Antibiotics: Discovery of Alternative Routes for Quinone Formation Encoded in the act Gene Cluster  Susumu Okamoto,
Volume 18, Issue 9, Pages (September 2011)
Volume 20, Issue 1, Pages (January 2013)
Volume 19, Issue 7, Pages (July 2012)
Optimizing Glycosyltransferase Specificity via “Hot Spot” Saturation Mutagenesis Presents a Catalyst for Novobiocin Glycorandomization  Gavin J. Williams,
Volume 21, Issue 8, Pages (August 2014)
A Revised Pathway Proposed for Staphylococcus aureus Wall Teichoic Acid Biosynthesis Based on In Vitro Reconstitution of the Intracellular Steps  Stephanie.
Volume 15, Issue 8, Pages (August 2008)
Redesign of a Dioxygenase in Morphine Biosynthesis
Identification and Characterization of the Lysobactin Biosynthetic Gene Cluster Reveals Mechanistic Insights into an Unusual Termination Module Architecture 
Volume 20, Issue 12, Pages (December 2013)
No Need To Be Pure: Mix the Cultures!
Characterization of a Fungal Thioesterase Having Claisen Cyclase and Deacetylase Activities in Melanin Biosynthesis  Anna L. Vagstad, Eric A. Hill, Jason W.
Elucidation of the Biosynthetic Gene Cluster and the Post-PKS Modification Mechanism for Fostriecin in Streptomyces pulveraceus  Rixiang Kong, Xuejiao.
Volume 22, Issue 10, Pages (October 2015)
Kevin J. Forsberg, Sanket Patel, Timothy A. Wencewicz, Gautam Dantas 
Insights into the Generation of Structural Diversity in a tRNA-Dependent Pathway for Highly Modified Bioactive Cyclic Dipeptides  Tobias W. Giessen, Alexander M.
Carl J. Balibar, Sylvie Garneau-Tsodikova, Christopher T. Walsh 
Volume 20, Issue 12, Pages (December 2013)
Volume 19, Issue 5, Pages (May 2012)
Volume 18, Issue 4, Pages (April 2011)
Johnson Cheung, Michael E.P. Murphy, David E. Heinrichs 
PqsE of Pseudomonas aeruginosa Acts as Pathway-Specific Thioesterase in the Biosynthesis of Alkylquinolone Signaling Molecules  Steffen Lorenz Drees,
A Subdomain Swap Strategy for Reengineering Nonribosomal Peptides
Volume 20, Issue 10, Pages (October 2013)
Volume 17, Issue 4, Pages (April 2010)
Volume 22, Issue 10, Pages (October 2015)
Volume 21, Issue 8, Pages v-vi (August 2014)
An Artificial Pathway to 3,4-Dihydroxybenzoic Acid Allows Generation of New Aminocoumarin Antibiotic Recognized by Catechol Transporters of E. coli  Silke.
Foundations for Directed Alkaloid Biosynthesis
Volume 20, Issue 6, Pages (June 2013)
Surface-Induced Dissociation of Homotetramers with D2 Symmetry Yields their Assembly Pathways and Characterizes the Effect of Ligand Binding  Royston S.
Volume 21, Issue 8, Pages (August 2014)
One Enzyme, Three Metabolites: Shewanella algae Controls Siderophore Production via the Cellular Substrate Pool  Sina Rütschlin, Sandra Gunesch, Thomas.
An Electrophoretic Mobility Shift Assay Identifies a Mechanistically Unique Inhibitor of Protein Sumoylation  Yeong Sang Kim, Katelyn Nagy, Samantha Keyser,
Michael J. Bowman, Simon Byrne, Jean Chmielewski  Chemistry & Biology 
Characterization of the Biosynthetic Gene Cluster for Benzoxazole Antibiotics A33853 Reveals Unusual Assembly Logic  Meinan Lv, Junfeng Zhao, Zixin Deng,
Gerald Lackner, Markus Bohnert, Jonas Wick, Dirk Hoffmeister 
Vanessa V. Phelan, Yu Du, John A. McLean, Brian O. Bachmann 
Volume 24, Issue 2, Pages (February 2017)
Nature’s Strategy for Catalyzing Diels-Alder Reaction
L-DOPA Ropes in tRNAPhe
Aza-Tryptamine Substrates in Monoterpene Indole Alkaloid Biosynthesis
Dual Carbamoylations on the Polyketide and Glycosyl Moiety by Asm21 Result in Extended Ansamitocin Biosynthesis  Yan Li, Peiji Zhao, Qianjin Kang, Juan.
Volume 21, Issue 9, Pages (September 2014)
Volume 20, Issue 10, Pages (October 2013)
Cloning, Heterologous Expression, and Characterization of the Gene Cluster Required for Gougerotin Biosynthesis  Guoqing Niu, Lei Li, Junhong Wei, Huarong.
Volume 19, Issue 11, Pages (November 2012)
Volume 21, Issue 9, Pages (September 2014)
Volume 22, Issue 4, Pages vii-viii (April 2015)
Volume 18, Issue 3, Pages (March 2011)
Anika Kremer, Shu-Ming Li  Chemistry & Biology 
Presentation transcript:

Tandem Enzymatic Oxygenations in Biosynthesis of Epoxyquinone Pharmacophore of Manumycin-type Metabolites  Zhe Rui, Moriah Sandy, Brian Jung, Wenjun Zhang  Chemistry & Biology  Volume 20, Issue 7, Pages 879-887 (July 2013) DOI: 10.1016/j.chembiol.2013.05.006 Copyright © 2013 Elsevier Ltd Terms and Conditions

Chemistry & Biology 2013 20, 879-887DOI: (10. 1016/j. chembiol. 2013 Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 1 Chemical Structures of Manumycin-Type Compounds Asukamycin is A1; protoasukamycin is C1; 4-hydroxyprotoasukamcyin is D1. See also Figure S1. Chemistry & Biology 2013 20, 879-887DOI: (10.1016/j.chembiol.2013.05.006) Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 2 Characterization of AsuA2, AsuC11, and AsuC12 (A) AsuA2 activity toward various aromatic substrates in ATP-[32P]PPi exchange assays. A relative activity of 100% for 3,4-AHBA-dependent exchange corresponds to 82k CPM. All chemical structures are shown in Figure S3. (B) Determination of AsuA2 kinetic parameters by ATP-[32P]PPi exchange assays. Error bars represent SDs from at least three independently performed experiments. (C) Detection of holo-AsuC12 without AsuA2 and 3,4-AHB-S-AsuC12 in the AsuA2 reaction by HRMS with deconvolution. (D) Schematic of 3,4-AHBA activation and loading. See also Figures S3 and S4. Chemistry & Biology 2013 20, 879-887DOI: (10.1016/j.chembiol.2013.05.006) Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 3 Characterization of AsuE1 (A) Extracted ion chromatograms showing the conversion of C1 to D1 catalyzed by AsuE1. The calculated mass with 10 ppm mass error tolerance was used. (B) Determination of AsuE1 kinetic parameters. Error bars represent SDs from at least three independently performed experiments. See also Figures S5 and S6. Chemistry & Biology 2013 20, 879-887DOI: (10.1016/j.chembiol.2013.05.006) Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 4 Characterization of AsuE2 (A) Determination of AsuE2 kinetic parameters. Error bars represent SDs from at least three independently performed experiments. (B) Extracted ion chromatograms showing the conversion of C1 to D1 catalyzed by AsuE1/E2. The calculated mass with 10 ppm mass error tolerance was used. Assays contain 100 μM NADH, 100 μM protoasukamycin, 1 μM AsuE1, and 1 μM AsuE2. The control group lacks AsuE2 but contains 0.5 nM exogenous FMN. See also Figure S7. Chemistry & Biology 2013 20, 879-887DOI: (10.1016/j.chembiol.2013.05.006) Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 5 Characterization of AsuE3 (A) Extracted ion chromatograms showing the conversion of D1 to A1 catalyzed by AsuE3. The calculated mass with 10 ppm mass error tolerance was used. (B) Determination of AsuE3 kinetic parameters. Error bars represent SDs from at least three independently performed experiments. See also Figures S6 and S8. Chemistry & Biology 2013 20, 879-887DOI: (10.1016/j.chembiol.2013.05.006) Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 6 Schematic of the Epoxyquinone Moiety Formation in Asukamycin See also Figure S2 and Table S1. Chemistry & Biology 2013 20, 879-887DOI: (10.1016/j.chembiol.2013.05.006) Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 7 HPLC Analysis of Asukamycin Derivatives in ΔasuA3 Supplemented with 3-ABA, 4-ABA, 4-HBA, and 3,4-ACBA R′ = -H in C12 and C15; R′ = -COCH3 in C11 and C16; R = R1–R5 in C6–C10; λ = 325 nm. ΔasuA3, 3,4-AHBA deficient mutant. See also Figures S9–S11. Chemistry & Biology 2013 20, 879-887DOI: (10.1016/j.chembiol.2013.05.006) Copyright © 2013 Elsevier Ltd Terms and Conditions