Transport and Percolation in Complex Networks Guanliang Li Advisor: H. Eugene Stanley Collaborators: Shlomo Havlin, Lidia A. Braunstein, Sergey V. Buldyrev.

Slides:



Advertisements
Similar presentations
Dynamics of Social Interactions at Short Timescales G. Bianconi Department of Physics, Northeastern University SAMSI Workshop: Dynamics of networks SAMSI,
Advertisements

Peer-to-Peer and Social Networks Power law graphs Small world graphs.
Topology and Dynamics of Complex Networks FRES1010 Complex Adaptive Systems Eileen Kraemer Fall 2005.
Complex Networks: Complex Networks: Structures and Dynamics Changsong Zhou AGNLD, Institute für Physik Universität Potsdam.
Complex Network Theory
Complex Networks Advanced Computer Networks: Part1.
Mobile Communication Networks Vahid Mirjalili Department of Mechanical Engineering Department of Biochemistry & Molecular Biology.
Scale Free Networks.
The Small World Phenomenon: An Algorithmic Perspective Speaker: Bradford Greening, Jr. Rutgers University – Camden.
Small-world networks.
Collective Dynamics of ‘Small World’ Networks C+ Elegans: Ilhan Savut, Spencer Telford, Melody Lim 29/10/13.
Algorithmic and Economic Aspects of Networks Nicole Immorlica.
Emergence of Scaling in Random Networks Albert-Laszlo Barabsi & Reka Albert.
Interacting Climate Networks Potsdam Institute for Climate Impact Research & Institut of Physics, Humboldt-Universität zu Berlin & King‘s College, University.
It’s a Small World by Jamie Luo. Introduction Small World Networks and their place in Network Theory An application of a 1D small world network to model.
School of Information University of Michigan Network resilience Lecture 20.
VL Netzwerke, WS 2007/08 Edda Klipp 1 Max Planck Institute Molecular Genetics Humboldt University Berlin Theoretical Biophysics Networks in Metabolism.
Daniel ben -AvrahamClarkson University Boston Universtiy Reuven Cohen Tomer Kalisky Alex Rozenfeld Bar-Ilan University Eugene Stanley Lidia Braunstein.
Information Networks Small World Networks Lecture 5.
Farnoush Banaei-Kashani and Cyrus Shahabi Criticality-based Analysis and Design of Unstructured P2P Networks as “ Complex Systems ” Mohammad Al-Rifai.
Fractality vs self-similarity in scale-free networks The 2 nd KIAS Conference on Stat. Phys., 07/03-06/06 Jin S. Kim, K.-I. Goh, G. Salvi, E. Oh and D.
Cascading failures in interdependent networks and financial systems -- Departmental Seminar Xuqing Huang Advisor: Prof. H. Eugene Stanley Collaborators:
Sergey Buldyrev Department of Physics Yeshiva University
Network theory and its applications in economic systems -- Final Oral Exam Xuqing Huang Advisor: Prof. H. Eugene Stanley Collaborators: Prof. Shlomo Havlin.
Weighted networks: analysis, modeling A. Barrat, LPT, Université Paris-Sud, France M. Barthélemy (CEA, France) R. Pastor-Satorras (Barcelona, Spain) A.
CSE 522 – Algorithmic and Economic Aspects of the Internet Instructors: Nicole Immorlica Mohammad Mahdian.
Small-World Graphs for High Performance Networking Reem Alshahrani Kent State University.
Scale Free Networks Robin Coope April Abert-László Barabási, Linked (Perseus, Cambridge, 2002). Réka Albert and AL Barabási,Statistical Mechanics.
MEDUSA – New Model of Internet Topology Using k-shell Decomposition Shai Carmi Shlomo Havlin Bloomington 05/24/2005.
Degree correlations in complex networks Lazaros K. Gallos Chaoming Song Hernan A. Makse Levich Institute, City College of New York.
Zhenhua Wu Advisor: H. E. StanleyBoston University Co-advisor: Lidia A. BraunsteinUniversidad Nacional de Mar del Plata Collaborators: Shlomo HavlinBar-Ilan.
Physical Mechanism Underlying Opinion Spreading Jia Shao Advisor: H. Eugene Stanley J. Shao, S. Havlin, and H. E. Stanley, Phys. Rev. Lett. 103,
Physical Mechanism Underlying Opinion Spreading
Transport Properties of Fractal and Non-Fractal Scale-Free Networks
Clustering and spreading of behavior and opinion in social networks Lazaros Gallos Levich Institute, City College of New York Hernan A. Makse - Shlomo.
Optimization Based Modeling of Social Network Yong-Yeol Ahn, Hawoong Jeong.
(Social) Networks Analysis III Prof. Dr. Daning Hu Department of Informatics University of Zurich Oct 16th, 2012.
Percolation in self-similar networks Dmitri Krioukov CAIDA/UCSD M. Á. Serrano, M. Boguñá UNT, March 2011.
MEDUSA – New Model of Internet Topology Using k-shell Decomposition Shai Carmi Shlomo Havlin Bloomington 05/24/2005.
Weighted networks: analysis, modeling A. Barrat, LPT, Université Paris-Sud, France M. Barthélemy (CEA, France) R. Pastor-Satorras (Barcelona, Spain) A.
Random-Graph Theory The Erdos-Renyi model. G={P,E}, PNP 1,P 2,...,P N E In mathematical terms a network is represented by a graph. A graph is a pair of.
Self-Similarity of Complex Networks Maksim Kitsak Advisor: H. Eugene Stanley Collaborators: Shlomo Havlin Gerald Paul Zhenhua Wu Yiping Chen Guanliang.
Gennaro Cordasco - How Much Independent Should Individual Contacts be to Form a Small-World? - 19/12/2006 How Much Independent Should Individual Contacts.
Social Network Analysis Prof. Dr. Daning Hu Department of Informatics University of Zurich Mar 5th, 2013.
Complex Networks Measures and deterministic models Philippe Giabbanelli.
Physics of Flow in Random Media Publications/Collaborators: 1) “Postbreakthrough behavior in flow through porous media” E. López, S. V. Buldyrev, N. V.
p = 0.50 Site percolation Square lattice 400 x 400
Robustness and Structure of Complex Networks Shuai Shao Boston University, Physics Department A dvisor: Prof. Gene Stanley Co-advisor: Prof. Shlomo Havlin.
Lecture 10: Network models CS 765: Complex Networks Slides are modified from Networks: Theory and Application by Lada Adamic.
Application of statistical physics to random graph models of networks Sameet Sreenivasan Advisor: H. Eugene Stanley.
Percolation and diffusion in network models Shai Carmi, Department of Physics, Bar-Ilan University Networks Percolation Diffusion Background picture: The.
Most of contents are provided by the website Network Models TJTSD66: Advanced Topics in Social Media (Social.
Brief Announcement : Measuring Robustness of Superpeer Topologies Niloy Ganguly Department of Computer Science & Engineering Indian Institute of Technology,
Transport in weighted networks: optimal path and superhighways Collaborators: Z. Wu, Y. Chen, E. Lopez, S. Carmi, L.A. Braunstein, S. Buldyrev, H. E. Stanley.
Fractal Networks: Structures, Modeling, and Dynamics 章 忠 志 复旦大学计算机科学技术学院 Homepage:
Response network emerging from simple perturbation Seung-Woo Son Complex System and Statistical Physics Lab., Dept. Physics, KAIST, Daejeon , Korea.
Cascading failures of loads in interconnected networks under intentional attack Yongxiang Xia Department of Information Science and Electronic Engineering.
Daniel ben - Avraham Clarkson University Boston Universtiy Reuven Cohen Tomer Kalisky Alex Rozenfeld Bar-Ilan University Eugene Stanley Lidia Braunstein.
Hiroki Sayama NECSI Summer School 2008 Week 2: Complex Systems Modeling and Networks Network Models Hiroki Sayama
Lecture 1: Complex Networks
Topics In Social Computing (67810)
Biological networks CS 5263 Bioinformatics.
Learning to Generate Networks
Empirical analysis of Chinese airport network as a complex weighted network Methodology Section Presented by Di Li.
The Watts-Strogatz model
Section 8.2: Shortest path and small world effect
Shortest path and small world effect
Lecture 9: Network models CS 765: Complex Networks
Introducing complex networks into quantum regime
Network Science: A Short Introduction i3 Workshop
Presentation transcript:

Transport and Percolation in Complex Networks Guanliang Li Advisor: H. Eugene Stanley Collaborators: Shlomo Havlin, Lidia A. Braunstein, Sergey V. Buldyrev and José S. Andrade Jr.

Outline Part I: Towards design principles for optimal transport networks G. Li, S. D. S. Reis, A. A. Moreira, S. Havlin, H. E. Stanley and J. S. Andrade, Jr., PRL 104, (2010); PRE (submitted) Motivation: e.g. Improving the transport of New York subway system Questions: How to add the new lines? How to design optimal transport network? Part II: Percolation on spatially constrained networks D. Li, G. Li, K. Kosmidis, H. E. Stanley, A. Bunde and S. Havlin, EPL 93, (2011) Motivation: Understanding the structure and robustness of spatially constrained networks Questions: What are the percolation properties? Such as thresholds... What are the dimensions in percolation? How are spatial constraints reflected in percolation properties of networks?

Grid network L ~ L D. J. Watts and S. H. Strogatz, Collective dynamics of small-world networks, Nature, 393 (1998). How to add the long-range links? Shortest path length AB =6 A B small-world network ~log L Randomly add some long-range links: AB =3 Part I: Towards design principles for optimal transport networks G. Li, S. D. S. Reis, A. A. Moreira, S. Havlin, H. E. Stanley and J. S. Andrade, Jr., PRL 104, (2010); PRE (submitted)

Kleinberg model of social interactions J. Kleinberg, Navigation in a Small World, Nature 406, 845 (2000). Rich in short-range connectionsA few long-range connections Part I How to add the long-range links?

Kleinberg model continued P(r ij ) ~ r ij - where 0, and r ij is lattice distance between node i and j Q: Which gives minimal average shortest distance ? Part I Steps to create the network: Randomly select a node i Generate r ij from P(r ij ), e.g. r ij = 2 Randomly select node j from those 8 nodes on dashed box Connect i and j

Optimal in Kleinbergs model Minimal occurs at =0 d is the dimension of the lattice Without considering the cost of links Part I

Considering the cost of links Each link has a cost length r (e.g. airlines, subway) Have budget to add long-range links (i.e. total cost is usually system size N ) Trade-off between the number N l and length of added long-range links From P(r) ~ r - : =0, r is large, N l = / r is small large, r is small, N l is large Q: Which gives minimal with cost constraint? Part I

With cost constraint is the shortest path length from each node to the central node Part I Minimal occurs at =3

vs. L (Same data on log-log plots) For 3, ~ L For =3, ~ (ln L) Part I With cost constraint Conclusion:

Different lattice dimensions Optimal occurs at =d+1 (Total cost ~ N) when N Part I With cost constraint

Conclusion, part I For regular lattices, d=1, 2 and 3, optimal transport occurs at =d+1 More work can be found in thesis (chapter 3): 1.Extended to fractals, optimal transport occurs at = d f +1 2.Analytical approach Part I Empirical evidence 1. Brain network: L. K. Gallos, H. A. Makse and M. Sigman, PNAS, 109, 2825 (2011). d f =2.1±0.1, link length distribution obeys P(r) ~ r - with =3.1± Airport network: G. Bianconi, P. Pin and M. Marsili, PNAS, 106, (2009). d=2, distance distribution obeys P(r) ~ r - with =3.0±0.2

Part II: Percolation on spatially constrained networks P(r) ~ r - controls the strength of spatial constraint =0, no spatial constraint ER network large, strong spatial constraint Regular lattice Questions: What are the percolation properties? Such as the critical thresholds, etc. What are the fractal dimensions of the embedded network in percolation? D. Li, G. Li, K. Kosmidis, H. E. Stanley, A. Bunde and S. Havlin, EPL 93, (2011)

The embedded network Start from an empty lattice Add long-range connections with P(r) ~ r - until k ~ 4 Two special cases: =0 Erdős-Rényi(ER) network large Regular 2D lattice Part II

Percolation process Remove a fraction q of nodes, a giant component (red) exists Start randomly removing nodes Increase q, giant component breaks into small clusters when q exceeds a threshold q c, with p c =1-q c nodes remained Part II small clustersgiant component exists pcpc p

Giant component in percolation =1.5 =2.5 =3.5 =4.5 Part II

Result 1: Critical threshold p c pcpc ER (Mean field) p c =1/ k =0.25 Intermediate regimeLattice p c 0.59 Part II

Result 2: Size of giant component: M M ~ N in percolation : critical exponent ER (Mean field) =2/3 Intermediate regimeLattice =0.95 Part II =0.76

Result 3: Dimensions Examples: ER: d f, d e, but =2/3 2D lattice: d f =1.89, d e =2, =0.95 So we compare with d f /d e Percolation ( p=p c ): M ~ R d f Embedded network ( p=1 ): N ~ R d e M ~ N d f / d e = d f /d e M ~ N in percolation Part II

compare with d f /d e In percolationEmbedded network dfdf dede d f /d e Part II N

Conclusion, part II: Three regimes d, ER (Mean Field) > 2d, Regular lattice Intermediate regime, depending on Part II Transport properties still show three regimes. K. Kosmidis, S. Havlin and A. Bunde, EPL 82, (2008)

Summary For cost constrained networks, optimal transport occurs at =d+1 (regular lattices) or d f +1 (fractals) The structure of spatial constrained networks shows three regimes: 1. d, ER (Mean Field) 2.d < 2d, Intermediate regimes, percolation properties depend on 3. > 2d, Regular lattice