MATH 1330 Section 5.4b.

Slides:



Advertisements
Similar presentations
Chapter 14 Trigonometric Graphs, Identities, and Equations
Advertisements

6.5 & 6.7 Notes Writing equations of trigonometric functions given the transformations.
Inverse Trigonometric Functions Recall some facts about inverse functions: 1.For a function to have an inverse it must be a one-to-one function. 2.The.
4.5 Graphs of Sine and Cosine Functions
Notes Over 6.4 Graph Sine, Cosine Functions Notes Over 6.4 Graph Sine, Cosine, and Tangent Functions Equation of a Sine Function Amplitude Period Complete.
Finding an Equation from Its Graph
4-4 Graphing Sine and Cosine
Section 7.2 The Inverse Trigonometric Functions (Continued)
A bit more practice in Section 4.7b. Analysis of the Inverse Sine Function 1–1 D:R: Continuous Increasing Symmetry: Origin (odd func.) Bounded Abs. Max.
Trigonometric Functions
Chapter 6 – Graphs and Inverses of the Trigonometric Functions
Copyright © 2011 Pearson, Inc. 4.7 Inverse Trigonometric Functions.
4.7 Inverse Trig Functions. By the end of today, we will learn about….. Inverse Sine Function Inverse Cosine and Tangent Functions Composing Trigonometric.
Section 4.7 Inverse Trigonometric Functions Pg
Sin & Cos with Amplitude and Phase.. In the equation, 2 is a multiplier and called an amplitude. Amplitude describes the “height” of the trigonometric.
12.7 Graphing Trigonometric Functions Day 1: Sine and Cosine.
12.7 Graphing Trigonometric Functions Day 1: Sine and Cosine.
Notes Over 14.2 Translations of Trigonometric Graphs Translation of a Sine Function Amplitude Period.
Section 7-3 The Sine and Cosine Functions Objective: To use the definition of sine and cosine to find values of these functions and to solve simple trigonometric.
Notes Over 14.1 Graph Sine, Cosine, and Tangent Functions.
360° Trigonometric Graphs Higher Maths Trigonometric Functions1 y = sin x Half of the vertical height. Amplitude The horizontal width of one wave.
Trigonometric Ratios Section 8.1. Warm Up State the following: 1.Angle opposite AB 2.Side opposite angle A 3.Side opposite angle B 4.Angle opposite AC.
10.4: Inverses of Trigonometric Functions Algebra 2.
Chapter 6 Section 6.3 Graphs of Sine and Cosine Functions.
Section 4.7 Inverse Trigonometric Functions. Helpful things to remember. If no horizontal line intersects the graph of a function more than once, the.
MATH 1330 Section 5.4 a. Inverse Trigonometric Functions The function sin(x) is graphed below. Notice that this graph does not pass the horizontal line.
MATH 1330 Section 5.4.
MATH 1330 Section 5.4.
MATH 1330 Section 5.1.
MATH 1330 Section 6.3.
MATH 1330 Section 6.3.
MATH 1330 Section 6.1.
Transformations of the Graphs of Sine and Cosine Functions
MATH 1330 Section 4.4.
Sin & Cos with Amplitude and Phase.
MATH 1330 Section 5.4.
MATH 1330 Section 4.4.
MATH 1330 Section 5.1.
MATH 1330 Section 5.1a.
Transformations of the Graphs of Sine and Cosine Functions
Chapter 3 Section 3.
MATH 1330 Section 4.4.
Trigonometric Equations with Multiple Angles
Inverse Trigonometric Functions
Graphing Trigonometric Functions
MATH 1310 Section 4.2.
Notes Over 6.4 Graph Sine, Cosine Functions.
The Inverse Trigonometric Functions (Continued)
Sinusoidal Functions.
MATH 1330 Section 6.1.
The Inverse Sine, Cosine, and Tangent Functions
Chapter 3 Section 5.
MATH 1330 Section 6.3.
Notes Over 7.4 Finding an Inverse Relation
MATH 1311 Section 2.2.
Trigonometric Functions
On the unit circle, which radian measure represents the point located at (− 1 2 , − 3 2 )? What about at ( 2 2 , − 2 2 )? Problem of the Day.
MATH 1310 Section 2.8.
MATH 1310 Section 4.2.
Section 4.5 Graphs of Sine and Cosine Functions
MATH 1310 Section 2.8.
MATH 1310 Section 2.8.
Graphing: Sine and Cosine
8.3 – Model Periodic Behavior
Section 5.5 Graphs of Sine and Cosine Functions
MATH 1310 Section 2.8.
MATH 1310 Section 4.3.
MATH 1310 Section 4.3.
The Inverse Sine, Cosine, and Tangent Functions
Section 4.7.
Presentation transcript:

MATH 1330 Section 5.4b

Inverse Trigonometric Functions and Models

Popper 19: Question 1: a. 7 4 b. 33 4 c. 4 33 33 d. 4 7

Popper 19: Question 2: a. 12 13 b. 5 13 c. 12 5 d. 5 12

Models As we know, trigonometric functions repeat their behavior. Breathing normally, brain waves during deep sleep are just a couple of examples that can be described using a sine function.

Popper 20: 1. a. 2𝜋 365 b. 12 c. 3 d. -79 2. a. 2𝜋 365 b. 365 c.79 d. 183

Popper 20: 3. Amplitude 4. Period 5. Equation a. 0.6 b. 1.2 c. 2.5 d. 5 4. Period a. 0.6 b. 1.2 c. 2.5 d. 5 5. Equation 𝑎. 𝑓 𝑥 =1.2sin⁡( 2𝜋 5 𝑥) 𝒃. 𝑓 𝑥 =0.6sin⁡( 2𝜋 5 𝑥) c. 𝑓 𝑥 =0.6sin⁡(5𝑥) d. 𝑓 𝑥 = 2𝜋 5 sin⁡(0.6𝑥)