Chapter 3 outline 3.1 Transport-layer services

Slides:



Advertisements
Similar presentations
Principles of Congestion Control Chapter 3.6 Computer Networking: A top-down approach.
Advertisements

3-1 TCP Protocol r point-to-point: m one sender, one receiver r reliable, in-order byte steam: m no “message boundaries” r pipelined: m TCP congestion.
3: Transport Layer3b-1 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r full duplex data: m bi-directional data flow in same connection m MSS: maximum.
Introduction 1 Lecture 14 Transport Layer (Transmission Control Protocol) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer.
School of Information Technologies TCP Congestion Control NETS3303/3603 Week 9.
Data Communication and Networks Lecture 7 Congestion in Data Networks October 17, 2002 Joseph Conron Computer Science Department New York University
Chapter 3 Transport Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 12.
Transport Layer3-1 Congestion Control. Transport Layer3-2 Principles of Congestion Control Congestion: r informally: “too many sources sending too much.
Transport Layer 3-1 Outline r TCP m Congestion control m Flow control.
1 Congestion Control 2 Principles of Congestion Control Congestion: r informally: “too many sources sending too much data too fast for network to handle”
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley,
1 Congestion Control. Transport Layer3-2 Principles of Congestion Control Congestion: r informally: “too many sources sending too much data too fast for.
Week 9 TCP9-1 Week 9 TCP 3 outline r 3.5 Connection-oriented transport: TCP m segment structure m reliable data transfer m flow control m connection management.
The Future r Homework questions> r The next test is coming the 19 th (just before turkey day!) r Wednesday = review + anything not done today r Friday.
3: Transport Layer3b-1 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r full duplex data: m bi-directional data flow in same connection m MSS: maximum.
1 Chapter 3 Transport Layer. 2 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4.
Data Communication and Networks
Transport Layer3-1 Data Communication and Networks Lecture 8 Congestion Control October 28, 2004.
Transport Layer Congestion control. Transport Layer 3-2 Approaches towards congestion control End-to-end congestion control: r no explicit feedback.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
Transport Layer3-1 Announcement r Homework 2 in tonight m Will be graded and sent back before Th. class r Midterm next Tu. in class m Review session next.
TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 point-to-point:
3: Transport Layer3b-1 Principles of Congestion Control Congestion: r informally: “too many sources sending too much data too fast for network to handle”
Transport Layer 4 2: Transport Layer 4.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Chapter 3 Transport Layer
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Transport Layer1 Flow and Congestion Control Ram Dantu (compiled from various text books)
Principles of Congestion Control Congestion: informally: “too many sources sending too much data too fast for network to handle” different from flow control!
17-1 Last time □ UDP socket programming ♦ DatagramSocket, DatagramPacket □ TCP ♦ Sequence numbers, ACKs ♦ RTT, DevRTT, timeout calculations ♦ Reliable.
Chapter 3 Transport Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.
Contents Causes and cost of congestion Three examples How to handle congestion End-to-end Network-assisted TCP congestion control ATM ABR congestion control.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March
1 Transport Layer Lecture 10 Imran Ahmed University of Management & Technology.
By N.Gopinath AP/CSE Unit: III Introduction to Transport layer.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
1 John Magee 20 February 2014 CS 280: Transport Layer: Congestion Control Concepts, TCP Congestion Control Most slides adapted from Kurose and Ross, Computer.
CS-1652 The slides are adapted from the publisher’s material All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Jack Lange.
Advance Computer Networks Lecture#09 & 10 Instructor: Engr. Muhammad Mateen Yaqoob.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
Approaches towards congestion control
Transport Layer CS 381 3/7/2017.
Chapter 3 outline 3.1 transport-layer services
CS-1652 Jack Lange University of Pittsburgh
COMP 431 Internet Services & Protocols
Slides have been adapted from:
Chapter 3 outline 3.1 Transport-layer services
Chapter 3 outline 3.1 Transport-layer services
Chapter 3-3 TCP Congestion CTL *
Flow and Congestion Control
Transport Layer Content: Chapter 6 - Tanenbaum mixed with
TCP Review.
Congestion Control.
Chapter 3 Transport Layer
CSE 4213: Computer Networks II
October 1st, 2013 CS-1652 Jack Lange University of Pittsburgh
TCP 3: Transport Layer.
CS 5565 Network Architecture and Protocols
TCP Overview.
Chapter 3 outline 3.1 transport-layer services
CS-1652 Congestion Control Jack Lange University of Pittsburgh
Transport Layer: Congestion Control
Chapter 3 outline 3.1 Transport-layer services
TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 point-to-point:
Chapter 3 Transport Layer
October 4th, 2011 CS-1652 Jack Lange University of Pittsburgh
Presentation transcript:

Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 Principles of congestion control 3.7 TCP congestion control Transport Layer

Principles of Congestion Control informally: “too many sources sending too much data too fast for network to handle” different from flow control! manifestations: lost packets (buffer overflow at routers) long delays (queueing in router buffers) a top-10 problem! Transport Layer

Causes/costs of congestion: scenario 1 unlimited shared output link buffers Host A lin : original data Host B lout two senders, two receivers one router, infinite buffers no retransmission C=Max throughput large delays when congested maximum achievable throughput Note:λin/out is the byte rate of information flowing in or out. Left Figure should be clear, unless you have had calculus and calc based statistics, take the one on the right on faith. To get there you need to derive Little’s Formula (See Leon-Garcia, Widjaja. Communication Networks, McGraw Hill, 2000) Transport Layer

Causes/costs of congestion: scenario 2 one router, finite buffers sender retransmission of lost packet Host A lout lin : original data l'in : original data, plus retransmitted data Host B finite shared output link buffers λout is the rate of output that is usable (don’t count retransmitted packets if they arrive). We call this goodput. Transport Layer

Causes/costs of congestion: scenario 2 l in out = always: (goodput) “perfect” retransmission only when loss: retransmission of delayed (not lost) packet makes larger (than perfect case) for same l in out > l in l out R/2 lin lout b. a. c. R/4 R/3 λ‘ Offered load (Includes both original and retransmitted packets) Perfection – we only send when there is a known buffer available. [1] Near Perfection – we only retransmit when we know that we have lost a packet (e.g. very large timeout) [2] Reality – Sometimes we retransmit packets that are not lost. “costs” of congestion: more work (retrans) for given “goodput” unneeded retransmissions: link carries multiple copies of pkt Transport Layer

Causes/costs of congestion: scenario 3 four senders multihop paths timeout/retransmit l in Q: what happens as and increase ? l in Host A lout lin : original data l'in : original data, plus retransmitted data finite shared output link buffers Host B Transport Layer

Causes/costs of congestion: scenario 3 Host A lout Host B Another “cost” of congestion: when packet dropped, any “upstream transmission capacity used for that packet was wasted! Transport Layer

Approaches towards congestion control Two broad approaches towards congestion control: End-end congestion control: no explicit feedback from network congestion inferred from end-system observed loss, delay approach taken by TCP Network-assisted congestion control: routers provide feedback to end systems single bit indicating congestion (SNA, DECbit, TCP/IP ECN, ATM) explicit rate sender should send at SNA = IBM’s answer to anything that could go wrong: Systems Network Architecture DECbit = another attempt in the 90s that requires all routers to be modified (DEC apparently comes from the company DEC for which the designer worked at the time) TCP/IP ECN = Explicit Congestion Control ATM = Asynchronous Transfer Mode Transport Layer

Case study: ATM ABR congestion control ABR: available bit rate: “elastic service” if sender’s path “underloaded”: sender should use available bandwidth if sender’s path congested: sender throttled to minimum guaranteed rate RM (resource management) cells: sent by sender, interspersed with data cells bits in RM cell set by switches (“network-assisted”) NI bit: no increase in rate (mild congestion) CI bit: congestion indication RM cells returned to sender by receiver, with bits intact Transport Layer

Case study: ATM ABR congestion control two-byte ER (explicit rate) field in RM cell congested switch may lower ER value in cell sender’ send rate thus maximum supportable rate on path EFCI bit in data cells: set to 1 in congested switch if data cell preceding RM cell has EFCI set, sender sets CI bit in returned RM cell Transport Layer