K.P. Arkill, Ph.D., C.P. Winlove, D.Phil.  Osteoarthritis and Cartilage 

Slides:



Advertisements
Similar presentations
The association between metacarpal ratio, radiographic hand and knee osteoarthritis and its progression after meniscectomy  P.T. Paradowski, L.S. Lohmander,
Advertisements

B. Bai, Y. Li  Osteoarthritis and Cartilage 
Biomechanical, biochemical and structural correlations in immature and mature rabbit articular cartilage  P. Julkunen, T. Harjula, J. Iivarinen, J. Marjanen,
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
Yevgeniya Kobrina, Lassi Rieppo, Simo Saarakkala, Jukka S
Micromechanical mapping of early osteoarthritic changes in the pericellular matrix of human articular cartilage  R.E. Wilusz, S. Zauscher, F. Guilak 
Chondroitin sulphate: an effective joint lubricant?
Extraction of anatomical landmarks and axis for 3D coordinate system construction of femur and tibia bone models  X. Cui, H. Kim, S. Li, K.-S. Kwack,
Anisotropy of collagen fibre alignment in bovine cartilage: comparison of polarised light microscopy and spatially resolved diffusion-tensor measurements 
Differential proteome analysis of normal and osteoarthritic chondrocytes reveals distortion of vimentin network in osteoarthritis  S. Lambrecht, M.Pharm.,
Articular chondrocytes derived from distinct tissue zones differentially respond to in vitro oscillatory tensile loading  E.J. Vanderploeg, Ph.D., C.G.
Long-term periarticular bone adaptation in a feline knee injury model for post-traumatic experimental osteoarthritis  S.K. Boyd, Ph.D., R. Müller, Ph.D.,
Application of second derivative spectroscopy for increasing molecular specificity of fourier transform infrared spectroscopic imaging of articular cartilage 
A. Williams, Y. Qian, D. Bear, C.R. Chu  Osteoarthritis and Cartilage 
Hisham A. Alhadlaq, M.S., Yang Xia, Ph.D.  Osteoarthritis and Cartilage 
MR spectroscopy measurement of the diffusion of dimethyl sulfoxide in articular cartilage and comparison to theoretical predictions  A. Abazari, J.A.W.
The groove model of osteoarthritis applied to the ovine fetlock joint
H. Moriyama, Ph. D. , O. Yoshimura, Ph. D. , S. Kawamata, Ph. D. , K
Differential accumulation of lead and zinc in double-tidemarks of articular cartilage  A. Roschger, J.G. Hofstaetter, B. Pemmer, N. Zoeger, P. Wobrauschek,
Initial application of EPIC-μCT to assess mouse articular cartilage morphology and composition: effects of aging and treadmill running  N. Kotwal, J.
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
C. R. Henak, C. L. Abraham, A. E. Anderson, S. A. Maas, B. J. Ellis, C
M.L. Hall, D.A. Krawczak, N.K. Simha, J.L. Lewis 
Quantitative assessment of articular cartilage morphology via EPIC-μCT
A.R. Gannon, T. Nagel, D.J. Kelly  Osteoarthritis and Cartilage 
S.M.T. Chan, C.P. Neu, G. DuRaine, K. Komvopoulos, A.H. Reddi 
Promotion of the intrinsic damage–repair response in articular cartilage by fibroblastic growth factor-2  F.M.D. Henson, Ph.D., E.A. Bowe, Ph.D., M.E.
Three-dimensional distribution of articular cartilage thickness in the elderly talus and calcaneus analyzing the subchondral bone plate density  K. Akiyama,
Injury of primary afferent neurons may contribute to osteoarthritis induced pain: an experimental study using the collagenase model in rats  S. Adães,
Heterogeneity in patellofemoral cartilage adaptation to anterior cruciate ligament transection; chondrocyte shape and deformation with compression  A.L.
Regional variations of collagen orientation in normal and diseased articular cartilage and subchondral bone determined using small angle X-ray scattering.
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the guinea pig  V.B. Kraus, J.L. Huebner, J. DeGroot,
P. Orth, M. Cucchiarini, S. Wagenpfeil, M.D. Menger, H. Madry 
Y. Xia, Ph.D., N. Ramakrishnan, Ph.D., A. Bidthanapally, Ph.D. 
A. Williams, Y. Qian, C.R. Chu  Osteoarthritis and Cartilage 
Oral salmon calcitonin reduces cartilage and bone pathology in an osteoarthritis rat model with increased subchondral bone turnover  R.H. Nielsen, A.-C.
Multi-scalar mechanical testing of the calcified cartilage and subchondral bone comparing healthy vs early degenerative states  E. Hargrave-Thomas, F.
Estimation of mechanical properties of articular cartilage with MRI – dGEMRIC, T2 and T1 imaging in different species with variable stages of maturation 
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
P. Julkunen, J. Iivarinen, P. A. Brama, J. Arokoski, J. S. Jurvelin, H
Structural characteristics of the collagen network in human normal, degraded and repair articular cartilages observed in polarized light and scanning.
Temporal and spatial migration pattern of the subchondral bone plate in a rabbit osteochondral defect model  P. Orth, M. Cucchiarini, G. Kaul, M.F. Ong,
The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading  R.L. Mauck, C.C-B. Wang, E.S.
PCB126 induces apoptosis of chondrocytes via ROS-dependent pathways
L. Bian, S. L. Angione, K. W. Ng, E. G. Lima, D. Y. Williams, D. Q
Nonlinear optical microscopy of articular cartilage
On new bone formation in the pre-osteoarthritic joint
A numerical model to study mechanically induced initiation and progression of damage in articular cartilage  S.M. Hosseini, W. Wilson, K. Ito, C.C. van.
D.R. Rich, A.L. Clark  Osteoarthritis and Cartilage 
Pharmaceutical nanocarrier association with chondrocytes and cartilage explants: influence of surface modification and extracellular matrix depletion 
Do the matrix degrading enzymes cathepsins B and D increase following a high intensity exercise regime?  E.A. Bowe, Ph.D., R.C. Murray, Ph.D., L.B. Jeffcott,
New insights into the role of the superficial tangential zone in influencing the microstructural response of articular cartilage to compression  S.L.
Loss of Frzb and Sfrp1 differentially affects joint homeostasis in instability-induced osteoarthritis  S. Thysen, F.P. Luyten, R.J. Lories  Osteoarthritis.
H. Sadeghi, D.E.T. Shepherd, D.M. Espino  Osteoarthritis and Cartilage 
J. Desrochers, M.W. Amrein, J.R. Matyas  Osteoarthritis and Cartilage 
Opposing cartilages in the patellofemoral joint adapt differently to long-term cruciate deficiency: chondrocyte deformation and reorientation with compression 
N. Männicke, M. Schöne, M. Oelze, K. Raum  Osteoarthritis and Cartilage 
The effects of alendronate in the treatment of experimental osteonecrosis of the hip in adult rabbits  J.G. Hofstaetter, M.D., J. Wang, M.D., Ph.D., J.
Meniscectomy alters the dynamic deformational behavior and cumulative strain of tibial articular cartilage in knee joints subjected to cyclic loads  Y.
Who should have a joint replacement? A plea for more ‘phronesis’
In vitro glycation of articular cartilage alters the biomechanical response of chondrocytes in a depth-dependent manner  J.M. Fick, M.R.J. Huttu, M.J.
Ovariectomy alters the structural and biomechanical properties of ovine femoro-tibial articular cartilage and increases cartilage iNOS  M.A. Cake, Ph.D.,
Histopathological correlation of cartilage swelling detected by magnetic resonance imaging in early experimental osteoarthritis  E. Calvo, M.D., I. Palacios,
Lead accumulation in tidemark of articular cartilage
Nanoparticle targeting to cartilage: effects of surface charge on nanoparticle interactions with joint tissues  S.B. Brown, B. Sharma  Osteoarthritis.
M. L. Roemhildt, B. D. Beynnon, A. E. Gauthier, M. Gardner-Morse, F
Comparison of cartilage histopathology assessment systems on human knee joints at all stages of osteoarthritis development  C. Pauli, R. Whiteside, F.L.
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
R. Meder, Ph. D. , S. K. de Visser, B. Eng. (Med. ), J. C. Bowden, B
W.J. Anderst, M.S., C. Les, D.V.M., Ph.D., S. Tashman, Ph.D. 
Presentation transcript:

Solute transport in the deep and calcified zones of articular cartilage  K.P. Arkill, Ph.D., C.P. Winlove, D.Phil.  Osteoarthritis and Cartilage  Volume 16, Issue 6, Pages 708-714 (June 2008) DOI: 10.1016/j.joca.2007.10.001 Copyright © 2007 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 A cross-section of demineralised metacarpal articular cartilage stained with toluidine blue. AC: articular cartilage, S: articular surface, T: tidemark, CC: calcified cartilage and SB: subchondral bone. Osteoarthritis and Cartilage 2008 16, 708-714DOI: (10.1016/j.joca.2007.10.001) Copyright © 2007 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 A diagram of the diffusion chamber. Osteoarthritis and Cartilage 2008 16, 708-714DOI: (10.1016/j.joca.2007.10.001) Copyright © 2007 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 A representative section of metacarpal articular cartilage from an intact joint perfused with rhodamine B base. The tidemarks are labelled (T). (A) Fluorescence image of rhodamine B base, showing the region from which an intensity profile was constructed. (B) Transmitted white light image of the same area. Osteoarthritis and Cartilage 2008 16, 708-714DOI: (10.1016/j.joca.2007.10.001) Copyright © 2007 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 The equilibrium intensities (115h) of tracer in the calcified cartilage in diffusion chamber experiments. The intensity profiles for fluorescein (n=6) and rhodamine B base (n=15) and scaled by the concentration of tracer in the incubation medium as described in the text. Standard error bars are shown for each profile. Osteoarthritis and Cartilage 2008 16, 708-714DOI: (10.1016/j.joca.2007.10.001) Copyright © 2007 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 The distribution of tracer in the calcified zone in diffusion chamber experiments for different incubation times. At each point the concentration is scaled by the equilibrium intensity, shown in Fig. 4, as described in the text. (A) Fluorescein (2h incubation: n=5, 5h: n=5 and 17h: n=6). (B) Rhodamine B base (2h: n=8, 5h: n=7, and 17h: n=5). Distance is measured from the tidemark and the approximate position of the cement line is indicated (C). Standard error bars are shown for each profile. Osteoarthritis and Cartilage 2008 16, 708-714DOI: (10.1016/j.joca.2007.10.001) Copyright © 2007 Osteoarthritis Research Society International Terms and Conditions

Fig. 6 Concentration profiles (relative to equilibrium concentration) after a 1.5h rhodamine B base perfusion of the intact joint. (A) Mean profiles aligned at the surface. Positive distance represents depth below the articular surface (n=26). (B) Mean profiles aligned at the tidemark (n=31). Standard error bars are shown. Osteoarthritis and Cartilage 2008 16, 708-714DOI: (10.1016/j.joca.2007.10.001) Copyright © 2007 Osteoarthritis Research Society International Terms and Conditions

Fig. 7 Concentration profiles after 1.5h perfusion of the intact joint Na-fluorescein and rhodamine B (0.1mg/ml). Profiles (scaled by equilibrium concentration) are aligned at the surface peak. Positive distance represents depth below the articular surface. (A) Unloaded joint (n=7). (B) Loaded joint (n=7). The ratio of rhodamine B (Rh) to Na-fluorescein (Na-Fl) is plotted on the second axis. Standard error bars are shown. Osteoarthritis and Cartilage 2008 16, 708-714DOI: (10.1016/j.joca.2007.10.001) Copyright © 2007 Osteoarthritis Research Society International Terms and Conditions

Fig. 8 Data from the experiment described in Fig. 7, but with concentration profiles aligned at the tidemark. (A) Unloaded joint (n=8). (B) Loaded joint (n=8). The ratio of rhodamine B (Rh) to Na-fluorescein (Na-Fl) is plotted on the second axis. Standard error bars are shown. Osteoarthritis and Cartilage 2008 16, 708-714DOI: (10.1016/j.joca.2007.10.001) Copyright © 2007 Osteoarthritis Research Society International Terms and Conditions