KDUST暗能量研究 詹虎 及张新民、范祖辉、赵公博等人 KDUST 宇宙学研讨会 国台,2009.12.16.

Slides:



Advertisements
Similar presentations
Current Observational Constraints on Dark Energy Chicago, December 2001 Wendy Freedman Carnegie Observatories, Pasadena CA.
Advertisements

What Figure of Merit Should We Use to Evaluate Dark Energy Projects? Yun Wang Yun Wang STScI Dark Energy Symposium STScI Dark Energy Symposium May 6, 2008.
Massive Spectroscopy for Dark Energy in the South Josh Frieman MS-DESI Meeting, LBNL, March 2013 Some details in DESpec White Paper arXiv: (Abdalla,
Christian Wagner - September Potsdam Nonlinear Power Spectrum Emulator Christian Wagner in collaboration with Katrin Heitmann, Salman Habib,
The National Science Foundation The Dark Energy Survey J. Frieman, M. Becker, J. Carlstrom, M. Gladders, W. Hu, R. Kessler, B. Koester, A. Kravtsov, for.
Lecture 2: Observational constraints on dark energy Shinji Tsujikawa (Tokyo University of Science)
July 7, 2008SLAC Annual Program ReviewPage 1 Future Dark Energy Surveys R. Wechsler Assistant Professor KIPAC.
Complementary Probes ofDark Energy Complementary Probes of Dark Energy Eric Linder Berkeley Lab.
KDUST Supernova Cosmology
Dark Energy with 3D Cosmic Shear Dark Energy with 3D Cosmic Shear Alan Heavens Institute for Astronomy University of Edinburgh UK with Tom Kitching, Patricia.
Dark Energy J. Frieman: Overview 30 A. Kim: Supernovae 30 B. Jain: Weak Lensing 30 M. White: Baryon Acoustic Oscillations 30 P5, SLAC, Feb. 22, 2008.
Gong-Bo Zhao ICG, Portsmouth (PRL submitted) (PRL 11) (PRD 11) (PASP 11) (PRL 09) Understanding the Cosmic.
Statistics of the Weak-lensing Convergence Field Sheng Wang Brookhaven National Laboratory Columbia University Collaborators: Zoltán Haiman, Morgan May,
Weak Gravitational Lensing by Large-Scale Structure Alexandre Refregier (Cambridge) Collaborators: Richard Ellis (Caltech) David Bacon (Cambridge) Richard.
Progress on Cosmology Sarah Bridle University College London.
LSST CD-1 Review SLAC, Menlo Park, CA November 1 - 3, 2011 Analysis Overview Bhuv Jain and Jeff Newman.
Weak Lensing 3 Tom Kitching. Introduction Scope of the lecture Power Spectra of weak lensing Statistics.
The Science Case for the Dark Energy Survey James Annis For the DES Collaboration.
Eric V. Linder (arXiv: v1). Contents I. Introduction II. Measuring time delay distances III. Optimizing Spectroscopic followup IV. Influence.
Henk Hoekstra Ludo van Waerbeke Catherine Heymans Mike Hudson Laura Parker Yannick Mellier Liping Fu Elisabetta Semboloni Martin Kilbinger Andisheh Mahdavi.
Cosmic shear results from CFHTLS Henk Hoekstra Ludo van Waerbeke Catherine Heymans Mike Hudson Laura Parker Yannick Mellier Liping Fu Elisabetta Semboloni.
Polarization-assisted WMAP-NVSS Cross Correlation Collaborators: K-W Ng(IoP, AS) Ue-Li Pen (CITA) Guo Chin Liu (ASIAA)
Dark energy I : Observational constraints Shinji Tsujikawa (Tokyo University of Science)
Observational Probes of Dark Energy Timothy McKay University of Michigan Department of Physics Observational cosmology: parameters (H 0,  0 ) => evolution.
Cosmological studies with Weak Lensing Peak statistics Zuhui Fan Dept. of Astronomy, Peking University.
Observational test of modified gravity models with future imaging surveys Kazuhiro Yamamoto (Hiroshima U.) Edinburgh Oct K.Y. , Bassett, Nichol,
Dark Energy Probes with DES (focus on cosmology) Seokcheon Lee (KIAS) Feb Section : Survey Science III.
1 System wide optimization for dark energy science: DESC-LSST collaborations Tony Tyson LSST Dark Energy Science Collaboration meeting June 12-13, 2012.
Francisco Javier Castander Serentill Institut d’Estudis Espacials de Catalunya (IEEC) Institut de Ciències de l’Espai (ICE/CSIC) Barcelona Exploiting the.
LSST JDEM Euclid BigBOSS 南极 KDUST. 粒子物理宇宙学德州学院 5/28/10 “The acceleration of the Universe is, along with dark matter, the observed phenomenon that most.
The Structure Formation Cookbook 1. Initial Conditions: A Theory for the Origin of Density Perturbations in the Early Universe Primordial Inflation: initial.
Cosmology with Gravitaional Lensing
Non-parametric Reconstruction of the Hubble Expansion History with a Monotonicity Prior Hu Zhan 1 & Youhua Xu 1, 2 1 National Astronomical Observatories.
Refining Photometric Redshift Distributions with Cross-Correlations Alexia Schulz Institute for Advanced Study Collaborators: Martin White.
DMD Spectroscopy Yun Wang Yun Wang (with DMD slides from Massimo Robberto) WFIRST SDT #2, March, 2011.
 Acceleration of Universe  Background level  Evolution of expansion: H(a), w(a)  degeneracy: DE & MG  Perturbation level  Evolution of inhomogeneity:
BAOs SDSS, DES, WFMOS teams (Bob Nichol, ICG Portsmouth)
LSST and Dark Energy Dark Energy - STScI May 7, 2008 Tony Tyson, UC Davis Outline: 1.LSST Project 2.Dark Energy Measurements 3.Controlling Systematic Errors.
HST ACS data LSST: ~40 galaxies per sq.arcmin. LSST CD-1 Review SLAC, Menlo Park, CA November 1 - 3, LSST will achieve percent level statistical.
Cosmic shear and intrinsic alignments Rachel Mandelbaum April 2, 2007 Collaborators: Christopher Hirata (IAS), Mustapha Ishak (UT Dallas), Uros Seljak.
The Feasibility of Constraining Dark Energy Using LAMOST Redshift Survey L.Sun.
3rd International Workshop on Dark Matter, Dark Energy and Matter-Antimatter Asymmetry NTHU & NTU, Dec 27—31, 2012 Likelihood of the Matter Power Spectrum.
Complementary Probes of Dark Energy Josh Frieman Snowmass 2001.
Probing Cosmology with Weak Lensing Effects Zuhui Fan Dept. of Astronomy, Peking University.
1 Baryon Acoustic Oscillations Prospects of Measuring Dark Energy Equation of State with LAMOST Xuelei Chen ( 陳學雷 ) National Astronomical Observatory of.
Gravitational Lensing
Future observational prospects for dark energy Roberto Trotta Oxford Astrophysics & Royal Astronomical Society.
Cosmological Weak Lensing With SKA in the Planck era Y. Mellier SKA, IAP, October 27, 2006.
Two useful methods for the supernova cosmologist: (1) Including CMB constraints by using the CMB shift parameters (2) A model-independent photometric redshift.
Brenna Flaugher for the DES Collaboration; DPF Meeting August 27, 2004 Riverside,CA Fermilab, U Illinois, U Chicago, LBNL, CTIO/NOAO 1 Dark Energy and.
Probing Dark Energy with Cosmological Observations Fan, Zuhui ( 范祖辉 ) Dept. of Astronomy Peking University.
CTIO Camera Mtg - Dec ‘03 Studies of Dark Energy with Galaxy Clusters Joe Mohr Department of Astronomy Department of Physics University of Illinois.
Jochen Weller Decrypting the Universe Edinburgh, October, 2007 未来 の 暗 黒 エネルギー 実 験 の 相補性.
Cosmological constraints on neutrino mass Francesco De Bernardis University of Rome “Sapienza” Incontro Nazionale Iniziative di Fisica Astroparticellare.
The Dark Energy Survey Probe origin of Cosmic Acceleration:
For the Large-Scale Structure Science Collaboration
Princeton University & APC
Complementarity of Dark Energy Probes
P5: February 22, 2008 Weak Gravitational Lensing
Ben Wandelt Flatiron Institute
Exploring the systematic uncertainties of SNe Ia
Some issues in cluster cosmology
Photometric Redshift Training Sets
Sun Lei (孙磊) Peking University
Detection of integrated Sachs-Wolfe effect by cross-correlation of the
Intrinsic Alignment of Galaxies and Weak Lensing Cluster Surveys Zuhui Fan Dept. of Astronomy, Peking University.
The impact of non-linear evolution of the cosmological matter power spectrum on the measurement of neutrino masses ROE-JSPS workshop Edinburgh.
6-band Survey: ugrizy 320–1050 nm
Cosmology with Galaxy Correlations from Photometric Redshift Surveys
Constraining Dark Energy with the Large Synoptic Survey Telescope
Presentation transcript:

KDUST暗能量研究 詹虎 及张新民、范祖辉、赵公博等人 KDUST 宇宙学研讨会 国台,2009.12.16

Systematics of Dark Energy Probes Type Ia Supernova Luminosity evolution, Galactic & host-galaxy dust extinction, contamination. Weak lensing Shear calibration: Properties of additive & multiplicative shear errors? Photo-zs: What is the error distribution function? How and how well can we calibrate it? What is the impact of non-Gaussian photo-z errors on cosmological constraints? How about catastrophic redshift errors? Nonlinear evolution: Percent-level calibration of the nonlinear power spectrum at k < 1 h/Mpc? Baryonic influence on the dark matter distribution? Intrinsic alignment: Local & large-scale, intrinsic—intrinsic, gravitational—intrinsic alignments. How to remove/model the effects? Baryon Acoustic Oscillations Nonlinear evolution: Shift of the BAO scale? Higher-order statistics? Parameter estimation from non-Gaussian data? Galaxy bias: Scale dependence? luminosity dependence? Redshift distortion (spectroscopic BAO): Accurate calibration with N-body simulations? Cluster Counting Mass—observable relation: mean & variance? 12/16/2009 KDUST宇宙学

WL Shear Systematics Current best shear estimators can achieve multiplicative error (shear calibration error) of < 1% and residual shear of ~ 0.0001. Our forecasts for future surveys assume <m> ~ 0.5% and <c> ~ 10-5. 12/16/2009 KDUST宇宙学

WL Shear Systematics Parameter constraints Degradations due to shear errors are not bound (no self-calibration from WL itself). 12/16/2009 KDUST宇宙学

Uncertainty of Photo-z Error Distribution 12/16/2009 KDUST宇宙学

Uncertainty of Photo-z Error Distribution 12/16/2009 KDUST宇宙学

Dome A Advantages Good seeing: point sources, high-redshift objects, high-resolution imaging, source counts, shape measurement Infrared: high-redshift objects, photometric redshifts, low shape noise LONG night: time domain Dome A site is advantageous for controlling systematic errors of cosmological probes, which is critical to the success of future surveys. 12/16/2009 KDUST宇宙学

Dome A Advantages Slide from Jason Rhodes 12/16/2009 KDUST宇宙学

Simulation of Residual Shear 12/16/2009 KDUST宇宙学

Photo-z Sys Effects on DE Constraints Abdalla et al. (2008) Zhan et al. arXiv:0902.2599 A joint analysis of the shear and galaxy overdensities for the same set of galaxies involves galaxy—galaxy, galaxy—shear, and shear—shear correlations, which enable some calibration of systematics that would otherwise adversely impact each probe. While the WL constraints on the dark energy equation of state (EOS, w = p/r) parameters, w0 and wa, as dened by w = w0+wa(1-a), are sensitive to systematic uncertainties in the photo-z error distribution, the joint BAO and WL results remain fairly immune to these systematics. 12/16/2009 KDUST宇宙学

Impact of Systematics on DE Constraints Slide from Tony Tyson 12/16/2009 KDUST宇宙学 Zhan et al. arXiv:0902.2599

LSST w/ KDUST Calibration KDUST—LSST Synergy Dome A LSST LSST w/ KDUST Calibration Area/sq deg 5000—10000 20000 Gal dist n(z) z2exp(-z/0.6) z2exp(-z/0.5) Gal den/arcmin-2 70 40 Photo-z rms sz 0.03(1+z) 0.05(1+z) 0.04(1+z) Prior on photo-z bias sP(dz) 0.2sz 0.3sz Shear calibration error (×) ±0.002 ±0.005 ±0.003 Residual shear power (+) 4x10-10 10-9 6x10-10 SNeIa zmax >~ 2 0.8/1.2 -- 12/16/2009 KDUST宇宙学

KDUST Site Performance Without consideration for hardware or survey KDUST site assumptions: n(z) ~ z2exp(-z/0.6) (peaks at z=1.2) Photo-z rms: sz=0.03(1+z) (ugrizyJH) Photo-z bias prior: sP(dz)=0.2sz Shear calibration error: ±0.002 Residual shear power: 4×10-10 12/16/2009 KDUST宇宙学

KDUST Site Performance Without consideration for hardware or survey KDUST site assumptions: n(z) ~ z2exp(-z/0.6) (peaks at z=1.2) Photo-z rms: sz=0.03(1+z) (ugrizyJH) Photo-z bias prior: sP(dz)=0.2sz Shear calibration error: ±0.002 Residual shear power: 4×10-10 LSST site assumptions: n(z) ~ z2exp(-z/0.5) (peaks at z=1) Photo-z rms: sz=0.05(1+z) Photo-z bias prior: sP(dz)=0.3sz Shear calibration error: ±0.005 Residual shear power: 10-9 12/16/2009 KDUST宇宙学

KDUST—LSST Synergy n(z) ~ z2exp(-z/0.5) Photo-z rms: sz=0.05(1+z) LSST 20,000 sq. deg. ugrizy n(z) ~ z2exp(-z/0.5) Photo-z rms: sz=0.05(1+z) Photo-z bias prior: sP(dz)=0.3sz Shear calibration error: ±0.005 Residual shear power: 10-9 12/16/2009 KDUST宇宙学

KDUST—LSST Synergy 5000 sq. deg.: n(z) ~ z2exp(-z/0.6) KDUST JH + LSST ugrizy 5000 sq. deg.: n(z) ~ z2exp(-z/0.6) Photo-z rms: sz=0.03(1+z) Photo-z bias prior: sP(dz)=0.2sz Shear calibration error: ±0.002 Residual shear power: 4×10-10 15000 sq. deg.: n(z) ~ z2exp(-z/0.5) Photo-z rms: sz=0.04(1+z) Photo-z bias prior: sP(dz)=0.2sz Shear calibration error: ±0.003 Residual shear power: 6×10-10 12/16/2009 KDUST宇宙学

KDUST—LSST Synergy 10000 sq. deg.: n(z) ~ z2exp(-z/0.6) KDUST JH + LSST ugrizy 10000 sq. deg.: n(z) ~ z2exp(-z/0.6) Photo-z rms: sz=0.03(1+z) Photo-z bias prior: sP(dz)=0.2sz Shear calibration error: ±0.002 Residual shear power: 4×10-10 10000 sq. deg.: n(z) ~ z2exp(-z/0.5) Photo-z rms: sz=0.04(1+z) Photo-z bias prior: sP(dz)=0.2sz Shear calibration error: ±0.003 Residual shear power: 6×10-10 12/16/2009 KDUST宇宙学

Most importantly, KDUST helps control the systematics! KDUST—LSST Synergy KDUST JH + LSST ugrizy 5000 sq. deg.: n(z) ~ z2exp(-z/0.6) Photo-z rms: sz=0.03(1+z) Photo-z bias prior: sP(dz)=0.2sz Shear calibration error: ±0.002 Residual shear power: 4×10-10 15000 sq. deg.: n(z) ~ z2exp(-z/0.5) Photo-z rms: sz=0.04(1+z) Photo-z bias prior: sP(dz)=0.2sz Shear calibration error: ±0.003 Residual shear power: 6×10-10 Most importantly, KDUST helps control the systematics! SNe: SNAP like (z < 1.7) 12/16/2009 KDUST宇宙学

Comparable constraints to LSST can be obtained Zhao et al. 12/16/2009 KDUST宇宙学

New Results from Current Data Data: WMAP5 + small-scale CMB + SDSS LRG + ”constitution” sample (SN: CFA+UNION) New Results from Current Data Zhao & Zhang, arXiv: 0908.1568 12/16/2009 KDUST宇宙学 20

Dark Energy EOS Eigenmodes Dark energy EOS is interpolated from 30 parameters evenly spaced between a=0 and 1. KDUST modes probe slightly higher redshift than LSST ones. 12/16/2009 KDUST宇宙学

Summary Dome A has a great potential for dark energy studies. One scenario for KDUST would be focusing on NIR (JHK) bands and obtaining ugrizy data from LSST through collaboration. We need to explore other probes (such as strong lensing) that can take advantage of the Dome A site. To enable the sciences that KDUST is supposed to deliver, we must study the science cases in detail now and take the data challenge very seriously. 12/16/2009 KDUST宇宙学

Potential Collaborations Common aspects R&D tools Data pipelines Data management LAMOST TMT China Transient alerts Target selection Precise astrometry Precise photometry Spectroscopic follow-up Deep NIR imaging High-res imaging Redshift calibration Survey coverage Continuous observing 12/16/2009 KDUST宇宙学