Chromium Dipoles in Optical Lattices

Slides:



Advertisements
Similar presentations
Un condensat de chrome pour létude des interactions dipolaires. Bruno Laburthe Tolra Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse.
Advertisements

Trapped ultracold atoms: Bosons Bose-Einstein condensation of a dilute bosonic gas Probe of superfluidity: vortices.
Dynamics of Spin-1 Bose-Einstein Condensates
Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute Zero Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute.
Rotations and quantized vortices in Bose superfluids
1 Trey Porto Joint Quantum Institute NIST / University of Maryland University of Minnesota 26 March 2008 Controlled exchange interactions in a double-well.
Nonequilibrium dynamics of ultracold fermions Theoretical work: Mehrtash Babadi, David Pekker, Rajdeep Sensarma, Ehud Altman, Eugene Demler $$ NSF, MURI,
World of ultracold atoms with strong interaction National Tsing-Hua University Daw-Wei Wang.
World of zero temperature --- introduction to systems of ultracold atoms National Tsing-Hua University Daw-Wei Wang.
Competing instabilities in ultracold Fermi gases $$ NSF, AFOSR MURI, DARPA ARO Harvard-MIT David Pekker (Harvard) Mehrtash Babadi (Harvard) Lode Pollet.
Competing instabilities in ultracold Fermi gases $$ NSF, AFOSR MURI, DARPA Motivated by experiments of G.-B. Jo et al., Science (2009) Harvard-MIT David.
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
Temperature scale Titan Superfluid He Ultracold atomic gases.
Stability of a Fermi Gas with Three Spin States The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites Yi Zhang John Huckans.
University of Trento INFM. BOSE-EINSTEIN CONDENSATION IN TRENTO SUPERFLUIDITY IN TRAPPED GASES University of Trento Inauguration meeting, Trento
Studying dipolar effects in degenerate quantum gases of chromium atoms G. Bismut 1, B. Pasquiou 1, Q. Beaufils 1, R. Chicireanu 2, T. Zanon 3, B. Laburthe-Tolra.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators: Anne.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), A. Chotia, M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators:
Elastic and inelastic dipolar effects in chromium Bose-Einstein condensates Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori, A. Griesmaier, S. Giovanazzi and T. Pfau 5. Physikalisches Institut, Universität Stuttgart Assisi.
Have left: A. Chotia, A. Sharma, B. Pasquiou, G. Bismut, M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators:
Many-body quench dynamics in ultracold atoms Surprising applications to recent experiments $$ NSF, AFOSR MURI, DARPA Harvard-MIT Eugene Demler (Harvard)
E. Maréchal, O. Gorceix, P. Pedri, Q. Beaufils, B. Laburthe, L. Vernac, B. Pasquiou (PhD), G. Bismut (PhD) Excitation of a dipolar BEC and Quantum Magnetism.
Collective excitations in a dipolar Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
Polar molecules in optical lattices Ryan Barnett Harvard University Mikhail Lukin Harvard University Dmitry Petrov Harvard University Charles Wang Tsing-Hua.
Collaborations: L. Santos (Hannover) Students: Antoine Reigue, Ariane A.de Paz (PhD), B. Naylor, A. Sharma (post-doc), A. Chotia (post doc), J. Huckans.
Ultracold collisions in chromium: d-wave Feshbach resonance and rf-assisted molecule association Q. Beaufils, T. Zanon, B. Laburthe, E. Maréchal, L. Vernac.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
All-optical production of chromium BECs Bessel Engineering of Chromium Bruno Laburthe Tolra Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse.
Physics and Astronomy Dept. Kevin Strecker, Andrew Truscott, Guthrie Partridge, and Randy Hulet Observation of Fermi Pressure in Trapped Atoms: The Atomic.
Experimental study of Efimov scenario in ultracold bosonic lithium
Trap loss of spin-polarized 4 He* & He* Feshbach resonances Joe Borbely ( ) Rob van Rooij, Steven Knoop, Wim Vassen.
Lecture III Trapped gases in the classical regime Bilbao 2004.
Lecture IV Bose-Einstein condensate Superfluidity New trends.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators: Anne.
Elastic and inelastic dipolar effects in chromium BECs Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France B. Laburthe-Tolra.
Thermodynamics of Spin 3 ultra-cold atoms with free magnetization B. Pasquiou, G. Bismut (former PhD students), B. Laburthe-Tolra, E. Maréchal, P. Pedri,
Spin-3 dynamics study in a chromium BEC Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Olivier GORCEIX CLEO/Europe-EQEC.
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils (PhD), J.C. Keller, T. Zanon, R. Barbé, A. Pouderous (PhD), R. Chicireanu (PhD)
Dipolar chromium BECs, and magnetism
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Collaboration: L. Santos (Hannover) Former post doctorates : A. Sharma, A. Chotia Former Students: Antoine Reigue A. de Paz (PhD), B. Naylor (PhD), J.
Have left: A. Chotia, A. Sharma, B. Pasquiou, G. Bismut, M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators:
The anisotropic excitation spectrum of a chromium Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Sorbonne Paris Cité Villetaneuse.
Elastic and inelastic dipolar effects in chromium BECs Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD students.
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
1 Bose-Einstein condensation of chromium Ashok Mohapatra NISER, Bhubaneswar.
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
B. Pasquiou (PhD), G. Bismut (PhD) B. Laburthe, E. Maréchal, L. Vernac, P. Pedri, O. Gorceix (Group leader) Spontaneous demagnetization of ultra cold chromium.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
Phase separation and pair condensation in spin-imbalanced 2D Fermi gases Waseem Bakr, Princeton University International Conference on Quantum Physics.
EMMI Workshop, Münster V.E. Demidov, O. Dzyapko, G. Schmitz, and S.O. Demokritov Münster, Germany G.A. Melkov, Ukraine A.N. Slavin, USA V.L.
Magnetization dynamics in dipolar chromium BECs
Matter-wave droplets in a dipolar Bose-Einstein condensate
Dipolar chromium BECs de Paz (PhD), A. Chotia, B. Laburthe-Tolra,
ultracold atomic gases
BEC-BCS cross-over in the exciton gas
Coarsening dynamics Harry Cheung 2 Nov 2017.
Laboratoire de Physique des Lasers
Qiang Gu Ferromagnetism in Bose Systems Department of Physics
Novel quantum states in spin-orbit coupled quantum gases
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
Part II New challenges in quantum many-body theory:
Spectroscopy of ultracold bosons by periodic lattice modulations
Hiroyuki Nojiri, Department of Physics, Okayama University
Presentation transcript:

Chromium Dipoles in Optical Lattices Spin dynamics of Chromium Dipoles in Optical Lattices A. de Paz (PhD), A. Sharma, E. Maréchal, L. Vernac, O. Gorceix, B. Laburthe P. Pedri (Theory) Have left: B. Pasquiou (PhD), G. Bismut (PhD), A. Chotia, M. Efremov , Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators: Anne Crubellier (Laboratoire Aimé Cotton), J. Huckans, M. Gajda 1 1 1 1

Chromium : an artificially large spin (S=3): (magnetic) dipole-dipole interactions Long range Anisotropic R Van-der-Waals (contact) interactions Short range Isotropic 2 2

Anisotropic explosion pattern reveals dipolar coupling. Relative strength of dipole-dipole and Van-der-Waals interactions Spherical BEC collapses Stuttgart: Tune contact interactions using Feshbach resonances (Nature. 448, 672 (2007)) R Anisotropic explosion pattern reveals dipolar coupling. Stuttgart: d-wave collapse, PRL 101, 080401 (2008) See also Er PRL, 108, 210401 (2012) See also Dy, PRL, 107, 190401 (2012) and Dy Fermi sea PRL, 108, 215301 (2012) … and heteronuclear molecules… BEC stable despite attractive part of dipole-dipole interactions Small (but interesting) effects observed – at the % level : Striction – Stuttgart, PRL 95, 150406 (2005) - Collective excitations - Villetaneuse, PRL 105, 040404 (2010) - Anisotropic speed of sound, Villetaneuse, PRL 109, 155302 (2012) Cr:

Chromium (S=3): involve dipole-dipole interactions Polarized (« scalar ») BEC Hydrodynamics Collective excitations, sound, superfluidity Multicomponent (« spinor ») BEC Magnetism Phases, spin textures… Chromium (S=3): involve dipole-dipole interactions R Long-ranged Anisotropic Magnetism: Atoms are magnets Hydrodynamics: non-local mean-field Interactions couple spin and orbital degrees of freedom 4 4

Introduction to spinor physics Chapman, Sengstock… Exchange energy Coherent spin oscillation Quantum effects! Klempt Stamper-Kurn Domains, spin textures, spin waves, topological states Stamper-Kurn, Chapman, Sengstock, Shin… Quantum phase transitions Stamper-Kurn, Lett, Gerbier

Dipole-dipole interactions Main ingredients for spinor physics Main new features with Cr S=3 S=1,2,… 7 Zeeman states 4 scattering lengths New structures Spin-dependent contact interactions Spin exchange Strong spin-dependent contact interactions Purely linear Zeeman effect -1 1 And Dipole-dipole interactions Quadratic Zeeman effect

Dipolar interactions introduce magnetization-changing collisions without 1 Dipole-dipole interactions -1 3 with 2 R 1 -1 -2 -3

Dipolar relaxation, rotation, and magnetic field Angular momentum conservation -3 -2 -1 1 2 3 Rotate the BEC ? Spontaneous creation of vortices ? Einstein-de-Haas effect Important to control magnetic field Ueda, PRL 96, 080405 (2006) Santos PRL 96, 190404 (2006) Gajda, PRL 99, 130401 (2007) B. Sun and L. You, PRL 99, 150402 (2007) 8 8

S=3 Spinor physics with free magnetization 1 Spinor physics of a Bose gas with free magnetization (bulk) 2 (Quantum) magnetism in optical lattices Technical challenges : Good control of magnetic field needed (down to 100 mG) Active feedback with fluxgate sensors Low atom number – 10 000 atoms in 7 Zeeman states

Spin temperature equilibriates with mechanical degrees of freedom At low magnetic field: spin thermally activated -1 1 -2 -3 2 3 -3 -2 -1 0 1 2 3 We measure spin-temperature by fitting the mS population (separated by Stern-Gerlach technique) Related to Demagnetization Cooling expts, Pfau, Nature Physics 2, 765 (2006) 10

Spontaneous magnetization due to BEC T>Tc T<Tc -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 Thermal population in Zeeman excited states a bi-modal spin distribution BEC only in mS=-3 (lowest energy state) Cloud spontaneously polarizes ! A non-interacting BEC is ferromagnetic New magnetism, differs from solid-state PRL 108, 045307 (2012) 11

Below a critical magnetic field: the BEC ceases to be ferromagnetic ! B=100 µG B=900 µG Magnetization remains small even when the condensate fraction approaches 1 !! Observation of a depolarized condensate !! Necessarily an interaction effect PRL 108, 045307 (2012) 12

Good agreement between field below which we see demagnetization and Bc -1 Cr spinor properties at low field 3 3 2 2 1 1 -2 -1 -1 -2 -2 -3 -3 -3 Large magnetic field : ferromagnetic Low magnetic field : polar/cyclic Santos PRL 96, 190404 (2006) Ho PRL. 96, 190405 (2006) -2 -3 Good agreement between field below which we see demagnetization and Bc PRL 106, 255303 (2011) 13

Phases set by contact interactions, dipole-dipole interactions Open questions about equilibrium state Phases set by contact interactions, magnetization dynamics set by dipole-dipole interactions Santos and Pfau PRL 96, 190404 (2006) Diener and Ho PRL. 96, 190405 (2006) Magnetic field Demler et al., PRL 97, 180412 (2006) Polar Cyclic !! Depolarized BEC likely in metastable state !! - Operate near B=0. Investigate absolute many-body ground-state We do not (cannot ?) reach those new ground state phases Quench should induce vortices… Role of thermal excitations ? 14

Measure Tc(B) and M(Tc,B) for different magnetic fields B Magnetic phase diagram Quasi-Boltzmann distribution Measure Tc(B) and M(Tc,B) for different magnetic fields B Get Tc(M) Bi-modal spin distribution Phase diagram adapted from J. Phys. Soc. Jpn,   69, 12, 3864 (2000) See also PRA, 59, 1528 (1999) 15

0 Introduction to spinor physics 1 Spinor physics of a Bose gas with free magnetization 2 (Quantum) magnetism in opical lattices

Magnetization changing collisions Study quantum magnetism with dipolar gases ? Hubard model at half filling, Heisenberg model of magnetism (effective spin model) Dipole-dipole interactions between real spins Magnetization changing collisions

Mott state locally coupled to excited band Magnetization dynamics resonance for a Mott state with two atoms per site (~15 mG) Rf sweep 1 Rf sweep 2 -3 -2 -1 1 2 3 Load optical lattice m=+3, wait time Produce BEC m=-3 detect m=-3 Dipolar resonance when released energy matches band excitation Mott state locally coupled to excited band arXiv: 1212.5469 (2012)

Direct manifestation of anisotropic interactions : Strong anisotropy of dipolar resonances Anisotropic lattice sites May produce vortices in each lattice site (Einstein-de-Haas effect) arXiv: 1212.5469 (2012) See also PRL 106, 015301 (2011)

Spin dynamics at constant magnetization (<15mG) From now on : stay away from dipolar magnetization dynamics resonances, Spin dynamics at constant magnetization (<15mG) Magnetization changing collisions Can be suppressed in optical lattices Differs from Heisenberg magnetism: Related research with polar molecules: A. Micheli et al., Nature Phys. 2, 341 (2006). A.V. Gorshkov et al., PRL, 107, 115301 (2011), See also D. Peter et al., PRL. 109, 025303 (2012) And talk by A. Gorshkov…

Control the initial state by a tensor light-shift -1 -3 -2 -1 0 1 2 3 -2 A s- polarized laser Close to a JJ transition (100 mW 427.8 nm) -3 D=a mS2 Quadratic effect allows state preparation

Adiabatic state preparation in 3D lattice quadratic effect t -2 -3 Initiate spin dynamics by removing quadratic effect vary time Load optical lattice quadratic effect

Short times : fast oscillations due to spin-dependent contact interactions -3 -2 -1 G= ( 250 µs) Up to now unknown source of damping (sudden melting of Mott insulator ?) (Gap is much smaller in state mS=-2) (period  220 µs) PRELIMINARY

Sign for intersite dipolar interaction Long time-scale spin dynamics in lattice : intersite dipolar exchange Sign for intersite dipolar interaction (much slower than on-site dynamics) Magnetization is constant PRELIMINARY

Oscillations arise from interactions between doubled-occupied sites Effect of doublons ? Very slow spin dynamics for one particle per site: Intersite dipole-dipole coupling PRELIMINARY

Our current understanding: (Very) long time-scale dynamics due to inter-site dipolar exchange between singlons 1/e timescale = 25 ms Theoretical estimate : 2 atoms, 2 sites : exchange timescale = 50 ms Spin oscillations due to inter-site dipolar exchange between doublons Timescale = 4 ms Exact diagonalization 2 pairs, 2 sites Faster coupling because larger effecive spin

spinor physics with free magnetization Conclusions Bulk Magnetism: spinor physics with free magnetization New spinor phases at extremely low magnetic fields Lattice Magnetism: Magnetization dynamics is resonant Intersite dipolar spin-exchange

de Paz, A. Chotia, A. Sharma B. Pasquiou, G. Bismut, B. Laburthe-Tolra, E. Maréchal, L. Vernac, P. Pedri, M. Efremov, O. Gorceix Arijit Sharma Aurélie De Paz Amodsen Chotia 28 28 28 28