Transition between real sinusoidal signals (“time domain”)

Slides:



Advertisements
Similar presentations
Math Review with Matlab:
Advertisements

REVIEW OF COMPLEX NUMBERS
Complex Numbers in Engineering (Chapter 5 of Rattan/Klingbeil text)
RL-RC Circuits & Applications SVES Circuits Theory
Impedance and Admittance. Objective of Lecture Demonstrate how to apply Thévenin and Norton transformations to simplify circuits that contain one or more.
Complex Numbers for AC Circuits Topics Covered in Chapter : Positive and Negative Numbers 24-2: The j Operator 24-3: Definition of a Complex Number.
Department of Electronic Engineering BASIC ELECTRONIC ENGINEERING Steady-State Sinusoidal Analysis.
Parallel AC Circuits Analysis ET 242 Circuit Analysis II Electrical and Telecommunication Engineering Technology Professor Jang.
Slide 1EE100 Summer 2008Bharathwaj Muthuswamy EE100Su08 Lecture #11 (July 21 st 2008) Bureaucratic Stuff –Lecture videos should be up by tonight –HW #2:
AC Review Discussion D12.2. Passive Circuit Elements i i i + -
Lecture 191 Sinusoids (7.1); Phasors (7.3); Complex Numbers (Appendix) Prof. Phillips April 16, 2003.
1 Sinusoidal Functions, Complex Numbers, and Phasors Discussion D14.2 Sections 4-2, 4-3 Appendix A.
R,L, and C Elements and the Impedance Concept
Lesson 18 Phasors & Complex Numbers in AC
Lesson 20 Series AC Circuits. Learning Objectives Compute the total impedance for a series AC circuit. Apply Ohm’s Law, Kirchhoff’s Voltage Law and the.
Chapter 6(a) Sinusoidal Steady-State Analysis
Series and Parallel AC Circuits
Chapter 4 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
ES250: Electrical Science
Chapter 9 Sinusoidal Steady-State Analysis
Phys 272 Alternating Current. A.C. Versus D.C (Natural) Frequency, Period, etc…
Fundamentals of Electric Circuits Chapter 9
ELE130 Electrical Engineering 1 Week 5 Module 3 AC (Alternating Current) Circuits.
Sinusoids & Phasors. A sinusoidal current is usually referred to as alternating current (ac). Circuits driven by sinusoidal current or voltage sources.
1 Alternating Current Circuits Chapter Inductance CapacitorResistor.
Fall 2000EE201Phasors and Steady-State AC1 Phasors A concept of phasors, or rotating vectors, is used to find the AC steady-state response of linear circuits.
The V  I Relationship for a Resistor Let the current through the resistor be a sinusoidal given as Is also sinusoidal with amplitude amplitudeAnd.
Fundamentals of Electric Circuits Chapter 9 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Lecture 16: Sinusoidal Sources and Phasors Nilsson , App. B ENG17 : Circuits I Spring May 21, 2015.
Study Guide Final. Closed book/Closed notes Bring a calculator or use a mathematical program on your computer The length of the exam is the standard 2.
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 15.1 Alternating Voltages and Currents  Introduction  Voltage and Current.
AC Series-Parallel Circuits Chapter 18. AC Circuits 2 Rules and laws developed for dc circuits apply equally well for ac circuits Analysis of ac circuits.
DC & AC BRIDGES Part 2 (AC Bridge).
INC 112 Basic Circuit Analysis Week 9 Force Response of a Sinusoidal Input and Phasor Concept.
TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307.
Fundamentals of Electric Circuits Chapter 9
Unit 8 Phasors.
1 REVISION Things you should know Things you have learned in SEE1003 Things I EXPECT you to know ! 1 Knows how to write expressions for sinusoidal waveforms.
SINUSOIDAL STEADY-STATE ANALYSIS – SINUSOIDAL AND PHASOR
Series and Parallel ac Circuits.
Applied Circuit Analysis Chapter 12 Phasors and Impedance Copyright © 2013 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Kevin D. Donohue, University of Kentucky1 AC Steady-State Analysis Sinusoidal Forcing Functions, Phasors, and Impedance.
INC 111 Basic Circuit Analysis Week 11 Force Response of a Sinusoidal Input and Phasor Concept.
CHAPTER 2: DC Circuit Analysis and AC Circuit Analysis Motivation Sinusoids’ features Phasors Phasor relationships for circuit elements Impedance and admittance.
Chapter 15 Principles of Electric Circuits, Conventional Flow, 9 th ed. Floyd © 2010 Pearson Higher Education, Upper Saddle River, NJ All Rights.
Chapter 13 The Basic Elements and Phasors. Objectives Be able to add and subtract sinusoidal voltages or currents Use phasor format to add and subtract.
1© Manhattan Press (H.K.) Ltd Series combination of resistors, capacitors and inductors Resistor and capacitor in series (RC circuit) Resistor and.
CHAPTER 1: SINUSOIDS AND PHASORS
1 Chapter 9 Sinusoidal Steady-State Analysis Sinusoidal Steady-State Analysis.
Chapter 13 The Basic Elements and Phasors. Objectives Be able to add and subtract sinusoidal voltages or currents Use phasor format to add and subtract.
EE301 Phasors, Complex Numbers, And Impedance. Learning Objectives Define a phasor and use phasors to represent sinusoidal voltages and currents Determine.
12.1 Introduction This chapter will cover alternating current.
Chapter 9 Sinusoidal Steady-State Analysis
Alexander-Sadiku Fundamentals of Electric Circuits
Sinusoidal Excitation of Circuits
Ch4 Sinusoidal Steady State Analysis
COMPLEX NUMBERS and PHASORS
Chapter 6 Sinusoids and Phasors
Week 11 Force Response of a Sinusoidal Input and Phasor Concept
Sinusoidal Functions, Complex Numbers, and Phasors
Introduction to Complex Numbers
ECE 1270: Introduction to Electric Circuits
Licensed Electrical & Mechanical Engineer
ECE 1270: Introduction to Electric Circuits
Applied Electromagnetics EEE 161
Alexander-Sadiku Fundamentals of Electric Circuits
2. 2 The V-I Relationship for a Resistor Let the current through the resistor be a sinusoidal given as Is also sinusoidal with amplitude amplitude.
Chapter 15.
Complex Numbers in Engineering (Chapter 5 of Rattan/Klingbeil text)
INC 111 Basic Circuit Analysis
Presentation transcript:

Transition between real sinusoidal signals (“time domain”) and complex variable signals (“frequency domain”) General case, when voltages and/currents also have a phase shift: Amplitude Time-dependent (“oscillating”) component Phase Complex amplitude (includes phase) Time-dependent (“oscillating”) component

I-Vs in time-domain and on the complex plane Assuming v(t) and i(t) are the sinusoidal signals with the angular frequency w: Time domain (real variables) Complex variables Complex amplitudes Resistor complex amplitude Capacitor complex amplitude Inductor complex amplitude

Impedances Impedances Resistor Capacitor Inductor Complex amplitude I-V relationships using impedances Complex amplitude I-Vs Impedances Resistor Capacitor Inductor

Impedance, resistance, reactance Impedance is in general, a complex number. Therefore, in general, the impedance contains real and imaginary parts: Z = R + jX; where R is resistance; X is reactance Resistor no imaginary part: reactance = 0 Capacitor no real part: resistance = 0 no real part: resistance = 0 Inductor

Impedance of series connections Impedance is in general, a complex number. Therefore, in general, the impedance contains real and imaginary parts: Z = R + jX; where R is resistance; X is reactance R-C in series R C Using complex variables, a series R-C connection can be considered as a single impedance with the real part (resistance) = R and imaginary part (reactance) = XC = -1/(wC) R L Using complex variables, a series R-L connection can be considered as a single impedance with the real part (resistance) = R and imaginary part (reactance) = XL = wL R-L in series L C Using complex variables, a series L-C connection can be considered as a single impedance with the real part (resistance) = 0 and imaginary part (reactance) = XLC = wL -1/(wC) L-C in series

RC circuit example Find the current amplitude in the circuit at the signal frequency f = 1 GHz 1. Complex source voltage amplitude, VS= 9 V 2. Angular frequency, w = 2pf =2p*1E9 3. Total circuit impedance: v(t)= 9*cos(wt) V C 3 pF R 50 Ohm The reactance X = -1/(2p*1E9*3e-12) = - 53.05 Ohm; ZT = 50 – j50.35 Ohm 4. Complex current amplitude in the circuit: I = VS / ZT I = 0.0894 + 0.0900i 5. Complex current amplitude can be found if we present the complex number describing I in the Euler’s form: I = IM ejF IM = 0.1268; F = 0.79 rad

Complex numbers There are two commonly accepted notations for the j or i Some examples 1 + 4i is a complex number with a real part =1, imaginary part= 4 2 - j2 is a complex number with a real part =2, imaginary part= -2. -4i is a complex number with a real part = 0, imaginary part = -4 5 is a complex number with a real part = 5, imaginary part =0

Phasors and complex numbers f VM x y f R x0 y0 A pair of two parameters: the radius R and the angle f fully describes the position of the point (red dot) on the x – y plane The position of the point can also be described by a pair of two numbers: x0 and y0 The pair (R,j) or (x0, y0) is called a complex number Phasor representing complex amplitude (VM L f ) is a combination of two parameters: the amplitude VM (the length of the arrow) and the phase angle f . This pair of two parameters fully describes the AC waveform of a given angular frequency w

N = x + jy, x = Re(N); y = Im(N); Complex numbers Complex numbers provide a convenient technique to describe the phasors related to AC voltages and currents. N = x + jy, x = Re(N); y = Im(N); Complex number is the sum of two parts: Real part, Re(N), and “Imaginary” part, Im(N) multiplied by a so-called imaginary unit j (sometimes also denoted as i). Imaginary unit is a special number such that j2 = -1; Introduction of the imaginary unit is needed to provide simple and convenient rules to operate the pairs of two number (complex numbers) as a single number. The real number, the square of which is equal to (-1) does not exist. Therefore, j is not a real number.

Complex numbers There are two equivalent ways to define the complex number: by Real and Imaginary parts (x and y coordinates) or by the radius and the angle of the arrow poining to the number. This radius is also called a “modulus”, or an “absolute value” of the complex number. jy |R| Complex number N represented by the position of the dot on x-y plane jy1 x x1

Complex number N represented by the position of the dot on x-y plane Complex numbers The angle that the vector makes with the axis x is called an argument or phase angle |R| jy Complex number N represented by the position of the dot on x-y plane jy1 f x x1 x1 = |R| cos (f); y1 = |R| sin (f)

To summarize, any complex number can be described in two ways: Complex numbers To summarize, any complex number can be described in two ways: x Complex number N x1 jy1 jy f N = x1 + j y1 (Algebraic, or Cartesian form) N = |R| L f (Phasor, or Polar form )

The algebra of Complex numbers: all the algebraic operations, addition, subtraction, multiplication and division follow the algebra rules for real numbers; whenever there is a term i2 or (j2) replace it with (-1) z1 = a + bi and z2 = c + di; addition: z1 + z2 =a + bi + c + di =(a + c) + (b + d)i subtraction: z1 - z2 = (a - c) + (b - d)i

The algebra of Complex numbers: all the algebraic operations, addition, subtraction, multiplication and division follow the algebra rules for real numbers; whenever there is a term i2 or (j2) replace it with (-1) z1 = a + bi and z2 = c + di; multiplication: z1z2 = (a + bi)(c + di) = ac + adi + bci + bdi2; i2 = -1, therefore: z1z2 = (a + bi)(c + di) = ac + adi + bci - bd z1z2=ac - bd + (ad + bc)i

The algebra of Complex numbers: all the algebraic operations, addition, subtraction, multiplication and division follow the algebra rules for real numbers; whenever there is a term i2 or (j2) replace it with (-1) z1 = a + bi and z2 = c + di; division

The algebra of Complex numbers: Polar –> Cartesian form conversion Complex number N x1 jy1 jy f N = x1 + j y1 (Algebraic, or Cartesian form) |N| f (Phasor, or Polar form ) Re (N) = x = |N|*cos(f); Im (N) = y = |N|*sin(f);

The algebra of Complex numbers: Cartesian -> Polar form conversion Complex number N x1 jy1 jy f N = x1 + j y1 (Algebraic, or Cartesian form) |N| f (Phasor, or Polar form ) tan(f) = y/x = Im(N)/Re(N), or: f = arctan (y/x) = arctan [Im(N)/Re(N)]

RC circuit example for MATLAB simulations Find the voltage amplitude across the resistor R in the frequency range f = 10 MHz – 10 GHz v(t)= 9*cos(wt) V C 3 pF R 50 Ohm See the MATLAB code on the next slide

MATLAB code Comments clc Vm=9; C=3e-12;R=50; f=1e7:1e7:1e10; om=6.28*f; Z = R+(1./(i*om*C)); Vr = Vm./Z*R; Vrm = abs(Vr); AlphaR = angle(Vr); figure(1) plot(f, Vrm) xlabel('Frequency, Hz') ylabel('Voltage amplitude, V') figure(2) plot(f, AlphaR) ylabel('Voltage phase, rad') Clear matlab screen Define the variables … Define the frequency array Angular frequency Total impedance; note the “.” Complex voltage amplitude across resistance Voltage amplitude across R Resistor voltage phase shift (with respect to the source voltage) Plotting the frequency dependences: Figure (1) – resistor voltage amplitude Figure (2) – resistor voltage phase

Figure 1 Figure 2