Numerical Simulation of Complex and Multiphase Flows 18 th – 22 nd April 20005 Porquerolles 1/24 Finite volumes and finite elements for the numerical simulation.

Slides:



Advertisements
Similar presentations
TWO STEP EQUATIONS 1. SOLVE FOR X 2. DO THE ADDITION STEP FIRST
Advertisements

You have been given a mission and a code. Use the code to complete the mission and you will save the world from obliteration…
Advanced Piloting Cruise Plot.
1 Vorlesung Informatik 2 Algorithmen und Datenstrukturen (Parallel Algorithms) Robin Pomplun.
Chapter 1 The Study of Body Function Image PowerPoint
THE FINITE ELEMENT METHOD
Finite Element Method CHAPTER 8: FEM FOR PLATES & SHELLS
SPECIAL PURPOSE ELEMENTS
CHAPTER 1: COMPUTATIONAL MODELLING
Finite Element Method CHAPTER 6: FEM FOR FRAMES
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 5 Author: Julia Richards and R. Scott Hawley.
1 Copyright © 2010, Elsevier Inc. All rights Reserved Fig 2.1 Chapter 2.
By D. Fisher Geometric Transformations. Reflection, Rotation, or Translation 1.
Business Transaction Management Software for Application Coordination 1 Business Processes and Coordination.
and 6.855J Cycle Canceling Algorithm. 2 A minimum cost flow problem , $4 20, $1 20, $2 25, $2 25, $5 20, $6 30, $
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Title Subtitle.
My Alphabet Book abcdefghijklm nopqrstuvwxyz.
0 - 0.
DIVIDING INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
ADDING INTEGERS 1. POS. + POS. = POS. 2. NEG. + NEG. = NEG. 3. POS. + NEG. OR NEG. + POS. SUBTRACT TAKE SIGN OF BIGGER ABSOLUTE VALUE.
MULTIPLICATION EQUATIONS 1. SOLVE FOR X 3. WHAT EVER YOU DO TO ONE SIDE YOU HAVE TO DO TO THE OTHER 2. DIVIDE BY THE NUMBER IN FRONT OF THE VARIABLE.
SUBTRACTING INTEGERS 1. CHANGE THE SUBTRACTION SIGN TO ADDITION
MULT. INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
Addition Facts
Year 6 mental test 5 second questions
ZMQS ZMQS
1 A parallel software for a saltwater intrusion problem E. Canot IRISA/CNRS J. Erhel IRISA/INRIA Rennes C. de Dieuleveult IRISA/INRIA Rennes.
Richmond House, Liverpool (1) 26 th January 2004.

BT Wholesale October Creating your own telephone network WHOLESALE CALLS LINE ASSOCIATED.
Notes 15 ECE Microwave Engineering
Large Deformation Non-Linear Response of Composite Structures C.C. Chamis NASA Glenn Research Center Cleveland, OH L. Minnetyan Clarkson University Potsdam,
1 Challenge the future Subtitless On Lightweight Design of Submarine Pressure Hulls.
ABC Technology Project
Wallingford - May 2002 Flood propagation - UCL experiments 1 Flood propagation Dam-break flow experiments in idealised representation of complex topography.
1 Application of for Predicting Indoor Airflow and Thermal Comfort.
© Charles van Marrewijk, An Introduction to Geographical Economics Brakman, Garretsen, and Van Marrewijk.
© Charles van Marrewijk, An Introduction to Geographical Economics Brakman, Garretsen, and Van Marrewijk.
VOORBLAD.
Squares and Square Root WALK. Solve each problem REVIEW:
Chapter 5 Test Review Sections 5-1 through 5-4.
SIMOCODE-DP Software.
GG Consulting, LLC I-SUITE. Source: TEA SHARS Frequently asked questions 2.
Addition 1’s to 20.
25 seconds left…...
H to shape fully developed personality to shape fully developed personality for successful application in life for successful.
1 Modal methods for 3D heterogeneous neutronics core calculations using the mixed dual solver MINOS. Application to complex geometries and parallel processing.
Week 1.
Sparse linear solvers applied to parallel simulations of underground flow in porous and fractured media A. Beaudoin 1, J.R. De Dreuzy 2, J. Erhel 1 and.
We will resume in: 25 Minutes.
1 Unit 1 Kinematics Chapter 1 Day
How Cells Obtain Energy from Food
Chapter 30 Induction and Inductance In this chapter we will study the following topics: -Faraday’s law of induction -Lenz’s rule -Electric field induced.
Environmental Data Analysis with MatLab Lecture 15: Factor Analysis.
FEM Modeling of Instrumented Indentation
13-Optimization Assoc.Prof.Dr. Ahmet Zafer Şenalp Mechanical Engineering Department Gebze Technical.
Coupling Continuum Model and Smoothed Particle Hydrodynamics Methods for Reactive Transport Yilin Fang, Timothy D Scheibe and Alexandre M Tartakovsky Pacific.
1 Internal Seminar, November 14 th Effects of non conformal mesh on LES S. Rolfo The University of Manchester, M60 1QD, UK School of Mechanical,
A TWO-FLUID NUMERICAL MODEL OF THE LIMPET OWC CG Mingham, L Qian, DM Causon and DM Ingram Centre for Mathematical Modelling and Flow Analysis Manchester.
Approximate Riemann Solvers for Multi-component flows Ben Thornber Academic Supervisor: D.Drikakis Industrial Mentor: D. Youngs (AWE) Aerospace Sciences.
Stress constrained optimization using X-FEM and Level Set Description
FALL 2015 Esra Sorgüven Öner
A TWO-FLUID NUMERICAL MODEL OF THE LIMPET OWC
GENERAL VIEW OF KRATOS MULTIPHYSICS
Presentation transcript:

Numerical Simulation of Complex and Multiphase Flows 18 th – 22 nd April Porquerolles 1/24 Finite volumes and finite elements for the numerical simulation of wave breaking F. Golay University of Toulon, France ANAM/MNC

Numerical Simulation of Complex and Multiphase Flows 18 th – 22 nd April Porquerolles 2/24 Numerical simulation of wave breaking Finite volume and finite element code Mesh refinement Plan

Numerical Simulation of Complex and Multiphase Flows 18 th – 22 nd April Porquerolles 3/24 Mathematical model Numerical model Numerical results Numerical simulation of wave breaking

Numerical Simulation of Complex and Multiphase Flows 18 th – 22 nd April Porquerolles 4/24 Numerical simulation of wave breaking: Mathematical model where Equation Of State: stiffened gaz (Abgrall-Saurel, 1996) 1 )1( 11)( )()( 1 1 )1( 1 1 1)( 1 )()(1)(p a aa w ww aw )p( c Sound velocity P. Helluy, F. Golay: Mathematical and Numerical aspects of Low Mach Number Flows, Porquerolles 2004

Numerical Simulation of Complex and Multiphase Flows 18 th – 22 nd April Porquerolles 5/24 The system has the form of a system of conservation laws We solve it by a standard finite volume scheme CiCi CjCj Second order extension:MUSCL No pressure oscillation thanks to a special non-conservative discretisation of the fraction evolution. Numerical simulation of wave breaking: Numerical model

Numerical Simulation of Complex and Multiphase Flows 18 th – 22 nd April Porquerolles 6/24 Numerical simulation of wave breaking: Test case In the air sound velocity c=20m/s, p=10 5 Pa a = Pa, a =1.1 In the water sound velocity c=20m/s, p=10 5 Pa w = Pa, w =1.1

Numerical Simulation of Complex and Multiphase Flows 18 th – 22 nd April Porquerolles 7/24 Mesh: 2000x150 Numerical simulation of wave breaking: Numerical results wave propagation

Numerical Simulation of Complex and Multiphase Flows 18 th – 22 nd April Porquerolles 8/24 Numerical simulation of wave breaking: Numerical results wave breaking

Numerical Simulation of Complex and Multiphase Flows 18 th – 22 nd April Porquerolles 9/24 Simple and efficient method: no interface tracking The same code can be used for compressible multifluid flows Improvements: Unstructured mesh, automatic mesh refinement A posteriori error Physical interaction Mixed numerical method Numerical simulation of wave breaking: Partial conclusion Integration in a finite element code

Numerical Simulation of Complex and Multiphase Flows 18 th – 22 nd April Porquerolles 10/24 Finite element formulation Finite volume formulation Software architecture Validation Finite volume in a finite element code

Numerical Simulation of Complex and Multiphase Flows 18 th – 22 nd April Porquerolles 11/24 Finite volume/element formulation Finite element formulation Finite volume formulation Discontinuous finite element formulation Baumann, Oden (2000)

Numerical Simulation of Complex and Multiphase Flows 18 th – 22 nd April Porquerolles 12/24 FV & FE: Finite Volume formulation Geometrical node with no dof Centroid node with 5 dof Compute numerical flux exact Godunov scheme Helluy, Barberon, Rouy N+1 Compute nodal load vector Estimation of U with slope limiter Display the result

Numerical Simulation of Complex and Multiphase Flows 18 th – 22 nd April Porquerolles 13/24 FV & FE: Software architecture Object oriented finite element code: SIC (Systeme Interactif de Conception) Touzot, Aunay, Breitkopf 1985 Object Name Identifieur Template: Character array Real array Integer array … An object could be: - created - duplicated - listed - modified - … Exemple of object : - a node - a element - a kinematic condition - a matrix - a vector - a command - a model - … Object element Identifieur model number zone Id material properties Id geometric properties Id element properties Id interpolation function Id save vector List of nodes List of load case Mesh refinement parameter edges number List of neighbour elements Object node Identifieur Id kinematic condition Id load case number X coordinate Y coordinate Z coordinate Degree of freedom Nodal properties Equation numbers List of elements

Numerical Simulation of Complex and Multiphase Flows 18 th – 22 nd April Porquerolles 14/24 FV & FE: Validation Stationnary choc Test 1 Test 2

Numerical Simulation of Complex and Multiphase Flows 18 th – 22 nd April Porquerolles 15/24

Numerical Simulation of Complex and Multiphase Flows 18 th – 22 nd April Porquerolles 16/24 Mesh refinement / unrefinement / adaptation Finite element mesh refinement example: topologic optimization Quadtree mesh refinement Unrefinement

Numerical Simulation of Complex and Multiphase Flows 18 th – 22 nd April Porquerolles 17/24 Mesh refinement: Finite element mesh refinement e1 e2 e3 e4 e1 Refinement e1 e2 e3 e4 e1 e2 e1 e2 e3 e1 e2 e3 e1 e2 e3 e4 e1 conformity e1 e2 e1 e2

Numerical Simulation of Complex and Multiphase Flows 18 th – 22 nd April Porquerolles 18/24 Mesh refinement: Mesh refinement Test P=0,2,4P=4,6,8P=8,10,12P=12,14,16 Criterion 1: Criterion 2: Verfürth Initial Mesh Error eface e 2 u dlD)u(h 2 1 e 2 ece deR 22 e r 2 1 e 2 e Kerror Criterion R. Verfürth (2000)

Numerical Simulation of Complex and Multiphase Flows 18 th – 22 nd April Porquerolles 19/24 +1 ? u x =0 u y =0 x y u x =0 +1/2 +1 P=0,2,4 399 nodes 130 elements P=4,6,8 708 nodes 257 elements P=8,10, nodes 389 elements P=12,14, nodes 589 elements Mesh refinement: Mesh refinement & topologic optimisation

Numerical Simulation of Complex and Multiphase Flows 18 th – 22 nd April Porquerolles 20/24 time cpu improved best precision « static » front captured but conformity! local unrefinement is difficult

Numerical Simulation of Complex and Multiphase Flows 18 th – 22 nd April Porquerolles 21/24 Mesh refinement: Quadtree mesh refinement Hierarchical approach on quadrilateral

Numerical Simulation of Complex and Multiphase Flows 18 th – 22 nd April Porquerolles 22/24 1)Loop on volume to set a refinement criteria 2)Loop on nodes to find patch to unrefine -4 volumes at same hierarchical level -4 edge at same hierarchical level Modification of the central node Destruction of the other central nodes Destruction of the central edge elements Modification of the peripheral edges Loop on the nodes to merge edges if necessary Mesh refinement: Quadtree mesh unrefinement

Numerical Simulation of Complex and Multiphase Flows 18 th – 22 nd April Porquerolles 23/24 Mesh refinement: Wave breaking To be continued ….. New posteriori error criteria Interface captured by the entropy jump

Numerical Simulation of Complex and Multiphase Flows 18 th – 22 nd April Porquerolles 24/24 Conclusion Compressible bi-fluid model Finite volume formulation with exact Rieman solver (integration in FE code) Validation: simulation of wave breaking (confrontation with others models) Integration in a finite software architecture Quadtree mesh (un)refinement … 3D Parallel implementation A posteriori error Multiphysic simulation