Seismic evidence -> basalts are generated in the mantle

Slides:



Advertisements
Similar presentations
Evolution of magmas 1- Fractional crystallization: minerals formed.
Advertisements

Last time Your text, p. 185, suggests the following reactions for transitions in the upper mantle: Your text, p. 185, suggests the following reactions.
Igneous Rocks and Classifying Igneous Rocks
Creation of Magma Unlike snow, rock doesn’t all melt at once, because rocks are made up of several minerals, each with its own melting point. This reflects.
GEOL- 103 Lab 2: Igneous/Metamorphic Rocks. Igneous Rocks Form as molten rock cools and solidifies General characteristics of magma Parent material.
Outline 1.Properties of silicate liquids 2.Adiabatic decompression melting Melting temperature(s) of lherzolite Model for mid-ocean ridges 3.Melting in.
Dry Mantle Melting and the Origin of Basaltic Magma
Chapter 13: Mid-Ocean Rifts The Mid-Ocean Ridge System Figure After Minster et al. (1974) Geophys. J. Roy. Astr. Soc., 36,
Origin of Basaltic Magma
Magma Diversification
Phase Equilibrium At a constant pressure simple compounds (like ice) melt at a single temperature More complex compounds (like silicate magmas) have very.
IGNEOUS ROCKS rock = mixture of minerals, mineraloids, glass, or organic matter bound together in some way 1. magma is parent material for all rocks 2.
Chapter 10: Mantle Melting and the Generation of Basaltic Magma
1 SGES 1302 INTRODUCTION TO EARTH SYSTEM LECTURE 14: Rock Cycle & Magmatism.
Classification of Igneous Rocks
Classroom presentations to accompany Understanding Earth, 3rd edition prepared by Peter Copeland and William Dupré University of Houston Chapter 4 Igneous.
Chapter 4 Igneous Rocks.
Chapter 4 ~ Intrusives ~.
Lithospheric Plate Structure Lithosphere (or plate) = crust + uppermost, rigid part of the mantle.
Chapter 5: Igneous rocks
A primer on magmas and petrology: or, what the is a MORB
The Rock Cycle A rock is composed of grains of one or more minerals The rock cycle shows how one type of rocky material is transformed into another Igneous.
Volcanic Suites Francis 2014 Agua Pacaya Acatenango.
Experimental constraints on subduction-related magmatism : Hydrous Melting of upper mantle perdotites Modified after a ppt by Peter Ulmer (Blumone, Adamello,
Lecture Outlines Physical Geology, 12/e Plummer & Carlson Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Ultramafic Rock Bodies
Igneous Rocks and Their Origin Chapter 5. Igneous rocks - Formed from volcanic eruptions - either external or internal Sedimentary rocks - Formed from.
Igneous Rocks. The Rock Cycle The continuous and reversible processes that illustrates how one rock changes to another. “ One rock is the raw material.
1 Petrology Lecture 6 Generation of Basaltic Magma GLY Spring, 2012.
Igneous Rocks and Their Origin Chapter 3. The Rock Cycle A rock is composed of grains of one or more minerals The rock cycle shows how one type of rocky.
1. Binary and ternary phase diagrams; melting of the mantle
Magmas Best, Ch. 8. Constitution of Magmas Hot molten rock T = degrees C Composed of ions or complexes Phase –Homogeneous – Separable part.
Igneous rocks form as molten rock cools and solidifies General characteristics of magma Parent material of igneous rocks Forms from partial melting of.
Magma Oceans in the Inner Solar System Linda T. Elkins-Tanton.
Origin of Basaltic Magma
Trace Elements Ni Zr ppm wt. % SiO
Chapter 4: Igneous Rocks. Introduction Igneous rocks = formed from “fire” Magma = completely or partially molten rock Lava = magma which reaches surface.
Igneous Rocks Intrusive and extrusive rocks formed from the cooling and crystallization of magma.
Liquidus Projections for haplo-basalts The Basalt Tetrahedron at 1 atm: The olivine - clinopyroxene - plagioclase plane is a thermal divide in the haplo-basalt.
Mantle Melting Some slides from Mary Leech. Table A Classification of Granitoid Rocks Based on Tectonic Setting. After Pitcher (1983) in K. J. Hsü.
Petrology Midterm I Powerpoints 1-8 Quizzes 1-3 Homework 1-2 Winter Chapters 1-10.
The formation of MORB vs Ophiolites Anneen Burger Anhydrous Melting of Peridotite at 0-15 Kb Pressure and the Genesis of Tholeiitic Basalts A.L. Jaques.
Geological background
Lecture Outlines Physical Geology, 12/e
The Mantle Lherzolite xenolith.
Lecture 5: Partial melting of the mantle
Earth’s Interior “Seeing into the Earth”
Understanding Earth Chapter 4: IGNEOUS ROCKS Solids from Melts
Intro to Rocks Major Rock Types: There are three major rock types
GEOLOGY 101 Course Website: Today: Chapter 6
Geol 2312 Igneous and Metamorphic Petrology
Generation of Basaltic Magma GLY Spring, 2017
Geol 2312 Igneous and Metamorphic Petrology
Igneous Rocks and Plutons
Origin of Basaltic Magma
Chapter 5 Igneous Rocks Section 5.1.
Generation of Basaltic Magma GLY Spring, 2018
Diversification of Magmas
Rock Cycle & Igneous Rocks
Igneous Rocks Chapter 3.
Crust and mantle are solid rock not liquid
Class 8. Mantle Melting and Phase Diagrams William Wilcock
Igneous Rocks Chapter 3 Essentials of Geology, 8e
IGNEOUS ROCKS Introduction Igneous Compositions Igneous Textures
Mantle rocks Figure 2.2 C After IUGS Olivine Peridotites Lherzolite
Igneous Rocks.
Chapter 3 Igneous rocks.
Eutectic and Peritectic Systems
Generation of Basaltic Magma GLY Spring, 2019
Igneous Rocks Chapter 5.
Presentation transcript:

Mantle Melting, Generation of Basaltic Magma and Magmatic diversification Seismic evidence -> basalts are generated in the mantle Partial melting of mantle material probably can derive most other magmas from this primary magma by fractional crystallization, assimilation, etc. Basalt is the most common magma. If we are going to understand the origin of igneous rocks, it’s best to start with the generation of basalt from the mantle

2 principal types of basalt in the ocean basins Tholeiitic Basalt and Alkaline Basalt Table 10.1 Common petrographic differences between tholeiitic and alkaline basalts Tholeiitic Basalt Alkaline Basalt Usually fine-grained, intergranular Usually fairly coarse, intergranular to ophitic Groundmass No olivine Olivine common Clinopyroxene = augite (plus possibly pigeonite) Titaniferous augite (reddish) Orthopyroxene (hypersthene) common, may rim ol. Orthopyroxene absent (a third, minor, one is hi-Al, or calc-alk basalt & will be discussed later) No alkali feldspar Interstitial alkali feldspar or feldspathoid may occur Interstitial glass and/or quartz common Interstitial glass rare, and quartz absent Olivine rare, unzoned, and may be partially resorbed Olivine common and zoned Phenocrysts or show reaction rims of orthopyroxene Orthopyroxene uncommon Orthopyroxene absent Early plagioclase common Plagioclase less common, and later in sequence Clinopyroxene is pale brown augite Clinopyroxene is titaniferous augite, reddish rims after Hughes (1982) and McBirney (1993).

Tectonic settings Tholeiites are generated at mid-ocean ridges Also generated at oceanic islands, subduction zones Alkaline basalts generated at ocean islands Also at subduction zones How are they generated? And why two major types? Source is the mantle 1. What comprises the mantle? 2. What do we get when we melt it?

Samples from the mantle Ophiolites Slabs of oceanic crust and upper mantle Thrust at subduction zones onto edge of continent Dredge samples from oceanic crust Nodules and xenoliths in some basalts Kimberlite xenoliths Diamond-bearing pipes blasted up from the mantle carrying numerous xenoliths from depth

Mantle rocks Figure 2.2 C After IUGS Olivine Peridotites Lherzolite Dunite 90 Peridotites Wehrlite Harzburgite Lherzolite 40 Olivine Websterite Pyroxenites Orthopyroxenite 10 Websterite 10 Clinopyroxenite Orthopyroxene Clinopyroxene Figure 2.2 C After IUGS

Lherzolite is probably fertile unaltered mantle Dunite and harzburgite are refractory residuum after basalt has been extracted by partial melting 15 Tholeiitic basalt 10 Partial Melting Wt.% Al2O3 5 Figure 10-1 Brown and Mussett, A. E. (1993), The Inaccessible Earth: An Integrated View of Its Structure and Composition. Chapman & Hall/Kluwer. Lherzolite Harzburgite Residuum Dunite 0.0 0.2 0.4 0.6 0.8 Wt.% TiO2

Lherzolite: A type of peridotite with Olivine > Opx + Cpx Dunite 90 Peridotites Wehrlite Harzburgite Lherzolite 40 Olivine Websterite Pyroxenites Orthopyroxenite 10 Websterite 10 Clinopyroxenite Orthopyroxene Clinopyroxene Figure 2.2 C After IUGS

Phase diagram for aluminous 4-phase lherzolite: Al-phase = Plagioclase shallow (< 50 km) Spinel 50-80 km Garnet 80-400 km Si ® VI coord. > 400 km Note: the mantle will not melt under normal ocean geotherm! Figure 10.2 Phase diagram of aluminous lherzolite with melting interval (gray), sub-solidus reactions, and geothermal gradient. After Wyllie, P. J. (1981). Geol. Rundsch. 70, 128-153.

Melts can be created under realistic circumstances Plates separate and mantle rises at mid-ocean ridges Adibatic rise ® decompression melting Hot spots ® localized plumes of melt Fluid fluxing may give LVL Also important in subduction zones and other settings

Generation of tholeiitic and alkaline basalts from a chemically uniform mantle Variables (other than X) Temperature Pressure Variables (other than X) Temperature = % partial melting Pressure Fig. 10-2 indicates that, although the chemistry may be the same, the mineralogy varies Pressure effects on eutectic shift Figure 10.2 Phase diagram of aluminous lherzolite with melting interval (gray), sub-solidus reactions, and geothermal gradient. After Wyllie, P. J. (1981). Geol. Rundsch. 70, 128-153.

Temperature: % of partial melting No realistic mechanism for the general case Local hot spots OK very limited area Figure 10.3. Melting by raising the temperature.

Pressure effects: Increased pressure moves the ternary eutectic minimum from the oversaturated tholeiite field to the under-saturated alkaline basalt field Alkaline basalts are thus favored by greater depth of melting In Figure 10.8 Change in the eutectic (first melt) composition with increasing pressure from 1 to 3 GPa projected onto the base of the basalt tetrahedron. After Kushiro (1968), J. Geophys. Res., 73, 619-634.

Liquids and residuum of melted pyrolite Tholeiite produced at < 30 km depth by 25% PM 60 km Alkalis are incompatible so tend to concentrate in first low % partial melts 20% PM -> alkaline basalt 30% PM -> tholeiite (only 25% or less at 30 km so looks like tholeiitic nature suppressed with depth) Note that residuum is Ol + Opx (harzburgite) Note also the thermal divide between thol and alk at low pressure for FX Figure 10.9 After Green and Ringwood (1967). Earth Planet. Sci. Lett. 2, 151-160.

Initial Conclusions: Tholeiites favored by shallower melting 25% melting at <30 km ® tholeiite 25% melting at 60 km ® olivine basalt Tholeiites favored by greater % partial melting (F) 20 % melting at 60 km ® alkaline basalt incompatibles (alkalis) ® initial melts 30 % melting at 60 km ® tholeiite

Primary magmas Formed at depth and not subsequently modified by FX or Assimilation Criteria Highest Mg# (100Mg/(Mg+Fe)) really ® parental magma Experimental results of lherzolite melts Mg# = 66-75 Cr > 1000 ppm Ni > 400-500 ppm Multiply saturated

Magmatic Differentiation Any process by which a magma is able to diversify and produce a magma or rock of different composition

Magmatic Differentiation Two essential processes 1. Creates a compositional difference in one or more phases 2. Preserves the chemical difference by segregating (or fractionating) the chemically distinct portions 1. Creates a compositional difference in one or more phases as elements partition themselves in response to a change in an intensive variable, such as pressure, temperature, or composition This will determine the trend of the differentiation process 2. Preserves the chemical difference by segregating (or fractionating) the chemically distinct portions so that they may either form a rock, or continue to evolve as separate systems The effectiveness of the fractionation process determines extent of differentiation proceeds along a particular trend Most common: differentiation involving the physical separation of phases in multi- phase systems The effectiveness depends upon contrasts in physical properties such as density, viscosity, diffusivity, and size/shape The energy is usually thermal or gravitational The phases that are fractionated in magmatic systems can be either liquid-solid, liquid-liquid, or liquid-vapor

Partial Melting Separation of a partially melted liquid from the solid residue Involves the partitioning of chemical constituents Can produce a variety of melt compositions from a single source Discussed already, only recap here

Effects of removing liquid at various stages of melting Eutectic systems First melt always = eutectic composition Major element composition of eutectic melt is constant until one of the source mineral phases is consumed (trace elements differ) Once a phase is consumed, the next increment of melt will be different X and T Trace element behavior (Chapter 9): several models for crystallization and melting (batch melting, Rayleigh fractional melting...) X of a melt produced by partial melting of a particular source is a function of the pressure, temperature (the fraction of the source that is melted)

Sufficient melt must be produced for it to Separation of a partially melted liquid from the solid residue requires a critical melt % Sufficient melt must be produced for it to Form a continuous, interconnected film Have enough interior volume that it is not all of it is adsorbed to the crystal surfaces Partial melting may be responsible for the generation of a variety of magmas. But for now we have created a basalt (or 2) via partial melting of mantle lherzolite. How might this basalt diversify to create a broader spectrum of rock types?

Crystal Fractionation Dominant mechanism by which most magmas, once formed, differentiate Chapters 6 and 7: effects of removing crystals as they formed (compared to equilibrium crystallization) on the liquid line of descent

Kilauea Iki lava lake, Hawaii: A textbook example of magma differentiation The Hawaiian Islands Kilauea Iki lava lake

Kilauea Iki lava lake, Hawaii, USA Before eruption After eruption Teng et al. 08 Science

Crystallization sequence of Kilauea Iki lavas 5%> MgO: oxides 7.5% > MgO > 5%: augite+ plag 11% > MgO > 7.5%: olivine MgO = 11%: primitive magma Helz (1987) MgO > 11%: Olivine + primitive magma Teng et al. 08 Science

Gravity settling The differential motion of crystals and liquid under the influence of gravity due to their differences in density Observations Sinking of crystals in experiments Natural occurrences: plutons and cumulates

Gravity settling Cool point a  olivine layer at base of pluton if first olivine sinks Next get ol+cpx layer finally get ol+cpx+plag Figure 7-2. After Bowen (1915), A. J. Sci., and Morse (1994), Basalts and Phase Diagrams. Krieger Publishers. Cumulate texture: Mutually touching phenocrysts with interstitial crystallized residual melt

Model settling velocities for spherical particles in Newtonian fluid Stoke’s Law V = the settling velocity (cm/sec) g = the acceleration due to gravity (980 cm/sec2) r = the radius of a spherical particle (cm) rs = the density of the solid spherical particle (g/cm3) rl = the density of the liquid (g/cm3) h = the viscosity of the liquid (1 c/cm sec = 1 poise) V 2gr ( ) 9 2 = - r h s l Model settling velocities for spherical particles in Newtonian fluid Model settling velocities for spherical particles in Newtonian fluid (no yield stress)

Olivine in basalt Olivine (rs = 3.3 g/cm3, r = 0.1 cm) Basaltic liquid (rl = 2.65 g/cm3, h = 1000 poise) V = 2·980·0.12 (3.3-2.65)/9·1000 = 0.0013 cm/sec = 4.7 cm/hr, or over a meter per day In the 5 years that the cooling of the Makaopuhi lava lake was studied (and it was largely liquid at the end of that period), olivines could have settled over 2 km! Plutons solidify over time periods of 104 to 106 years, permitting considerable gravity settling if Stokes’ Law is any proper measure = 4.7 cm/hr, or over a meter per day In the 5 years that the cooling of the Makaopuhi lava lake was studied (and it was largely liquid at the end of that period), olivines could have settled over 2 km! Plutons solidify over time periods of 104 to 106 years, permitting considerable gravity settling if Stokes’ Law is any proper measure

Rhyolitic melt h = 107 poise and rl = 2.3 g/cm3 hornblende crystal (rs = 3.2 g/cm3, r = 0.1 cm) V = 2 x 10-7 cm/sec, or 6 cm/year feldspars (rl = 2.7 g/cm3) V = 2 cm/year = 200 m in the 104 years that a stock might cool If 0.5 cm in radius (1 cm diameter) settle at 0.65 meters/year, or 6.5 km in 104 year cooling of stock Gravity settling of crystals is more effective in basaltic liquids, but also possible in granitics. Mafic plutons show more obvious textural features of the process Notice also that plagioclase crystals (r = 2.7 g/cm3) would not sink in a slightly Fe- rich basaltic melt (r = 2.7 g/cm3), and would even float if the Fe enrichment were greater Notice also that plagioclase crystals (r = 2.7 g/cm3) would not sink in a slightly Fe-rich basaltic melt (r = 2.7 g/cm3), and would even float if the Fe enrichment were greater

Stokes’ Law is overly simplified 1. Crystals are not spherical 2. Only basaltic magmas very near their liquidus temperatures behave as Newtonian fluids 1. Crystals are not spherical Tabular, accicular, and platy minerals will settle with slower velocities, but it is difficult to determine exactly how much slower 2. Only basaltic magmas very near their liquidus temperatures behave as Newtonian fluids Once even these begin to crystallize they develop a significant yield strength, that must be overcome before any motion is possible CRB at 1195oC had a yield strength of 60 Pa In order to overcome this resistance an olivine crystal must have been several centimeters in diameter! Yield strength considerably higher for cooler and more silicic liquids Gravity settling viable only in a mafic magma within a few degrees of the liquidus? Next slide is Kfs-Plag-Q of Toulumne

Late-stage fractional crystallization Fractional crystallization enriches late melt in incompatible, LIL, and non-lithophile elements Many concentrate further in the vapor Particularly enriched with resurgent boiling (melt already evolved when vapor phase released) Get a silicate-saturated vapor + a vapor-saturated late derivative silicate liquid Mineral segregation from a melt will enrich the melt in volatile phases Even fractionation of hydrous minerals removes less water from the melt than is concentrated by the separation of other minerals Eventually the magma reaches the saturation point and a hydrous vapor phase is produced This somewhat paradoxical “boiling off” of water as a magma cools has been called retrograde or resurgent boiling The vapor phase concentrates volatile constituents such as H2O, CO2, S, Cl, F, B, and P, as well as a wide range of incompatible and chalcophile elements (esp LILs)

8 cm tourmaline crystals from pegmatite 5 mm gold from a hydrothermal deposit

Pegmatites