CS 152 Computer Architecture and Engineering CS252 Graduate Computer Architecture Lecture 12 – Branch Prediction and Advanced Out-of-Order Superscalars.

Slides:



Advertisements
Similar presentations
Krste Asanovic Electrical Engineering and Computer Sciences
Advertisements

CSE 490/590, Spring 2011 CSE 490/590 Computer Architecture VLIW Steve Ko Computer Sciences and Engineering University at Buffalo.
2/28/2013 CS152, Spring 2013 CS 152 Computer Architecture and Engineering Lecture 11 - Out-of-Order Issue, Register Renaming, & Branch Prediction Krste.
Pipeline Hazards Pipeline hazards These are situations that inhibit that the next instruction can be processed in the next stage of the pipeline. This.
THE MIPS R10000 SUPERSCALAR MICROPROCESSOR Kenneth C. Yeager IEEE Micro in April 1996 Presented by Nitin Gupta.
CSE 490/590, Spring 2011 CSE 490/590 Computer Architecture ILP II Steve Ko Computer Sciences and Engineering University at Buffalo.
February 28, 2012CS152, Spring 2012 CS 152 Computer Architecture and Engineering Lecture 11 - Out-of-Order Issue, Register Renaming, & Branch Prediction.
CPE 731 Advanced Computer Architecture ILP: Part II – Branch Prediction Dr. Gheith Abandah Adapted from the slides of Prof. David Patterson, University.
CS 152 Computer Architecture and Engineering Lecture 13 - Out-of-Order Issue, Register Renaming, & Branch Prediction Krste Asanovic Electrical Engineering.
CSE 490/590, Spring 2011 CSE 490/590 Computer Architecture ILP III Steve Ko Computer Sciences and Engineering University at Buffalo.
March 11, 2010CS152, Spring 2010 CS 152 Computer Architecture and Engineering Lecture 14 - Advanced Superscalars Krste Asanovic Electrical Engineering.
Computer Architecture 2011 – Out-Of-Order Execution 1 Computer Architecture Out-Of-Order Execution Lihu Rappoport and Adi Yoaz.
CS 152 Computer Architecture and Engineering Lecture 14 - Advanced Superscalars Krste Asanovic Electrical Engineering and Computer Sciences University.
1 Lecture 7: Out-of-Order Processors Today: out-of-order pipeline, memory disambiguation, basic branch prediction (Sections 3.4, 3.5, 3.7)
CS 152 Computer Architecture and Engineering Lecture 15 - Advanced Superscalars Krste Asanovic Electrical Engineering and Computer Sciences University.
March 4, 2010CS152, Spring 2010 CS 152 Computer Architecture and Engineering Lecture 13 - Out-of-Order Issue, Register Renaming, & Branch Prediction Krste.
CS 252 Graduate Computer Architecture Lecture 5: Instruction-Level Parallelism (Part 2) Krste Asanovic Electrical Engineering and Computer Sciences University.
Goal: Reduce the Penalty of Control Hazards
Trace Caches J. Nelson Amaral. Difficulties to Instruction Fetching Where to fetch the next instruction from? – Use branch prediction Sometimes there.
March 9, 2011CS152, Spring 2011 CS 152 Computer Architecture and Engineering Lecture 12 - Advanced Out-of-Order Superscalars Krste Asanovic Electrical.
March 2, 2011CS152, Spring 2011 CS 152 Computer Architecture and Engineering Lecture 11 - Out-of-Order Issue, Register Renaming, & Branch Prediction Krste.
Arvind and Joel Emer Computer Science and Artificial Intelligence Laboratory M.I.T. Branch Prediction.
© Krste Asanovic, 2014CS252, Spring 2014, Lecture 7 CS252 Graduate Computer Architecture Spring 2014 Lecture 7: Branch Prediction and Load-Store Queues.
February 2, 2012CS152, Spring 2012 CS 152 Computer Architecture and Engineering Lecture 5 - Pipelining II (Branches, Exceptions) Krste Asanovic Electrical.
Ch2. Instruction-Level Parallelism & Its Exploitation 2. Dynamic Scheduling ECE562/468 Advanced Computer Architecture Prof. Honggang Wang ECE Department.
1 Dynamic Branch Prediction. 2 Why do we want to predict branches? MIPS based pipeline – 1 instruction issued per cycle, branch hazard of 1 cycle. –Delayed.
Branch.1 10/14 Branch Prediction Static, Dynamic Branch prediction techniques.
CS 152 Computer Architecture and Engineering Lecture 15 - Out-of-Order Memory, Complex Superscalars Review Krste Asanovic Electrical Engineering and Computer.
© Krste Asanovic, 2015CS252, Fall 2015, Lecture 7 CS252 Graduate Computer Architecture Spring 2014 Lecture 7: Advanced Out-of-Order Superscalar Designs.
Out-of-Order Execution & Register Renaming Krste Asanovic Laboratory for Computer Science Massachusetts Institute of Technology Asanovic/Devadas Spring.
1 Lecture 7: Speculative Execution and Recovery Branch prediction and speculative execution, precise interrupt, reorder buffer.
Yiorgos Makris Professor Department of Electrical Engineering University of Texas at Dallas EE (CE) 6304 Computer Architecture Lecture #12 (10/27/15) Course.
CS 6290 Branch Prediction. Control Dependencies Branches are very frequent –Approx. 20% of all instructions Can not wait until we know where it goes –Long.
Adapted from Computer Organization and Design, Patterson & Hennessy, UCB ECE232: Hardware Organization and Design Part 13: Branch prediction (Chapter 4/6)
COMPSYS 304 Computer Architecture Speculation & Branching Morning visitors - Paradise Bay, Bay of Islands.
Yiorgos Makris Professor Department of Electrical Engineering University of Texas at Dallas EE (CE) 6304 Computer Architecture Lecture #13 (10/28/15) Course.
March 1, 2012CS152, Spring 2012 CS 152 Computer Architecture and Engineering Lecture 12 - Advanced Out-of-Order Superscalars Krste Asanovic Electrical.
CS 352H: Computer Systems Architecture
Dynamic Scheduling Why go out of style?
Computer Architecture: Branch Prediction (II) and Predicated Execution
Prof. Hsien-Hsin Sean Lee
CS 152 Computer Architecture and Engineering Lecture 11 - Out-of-Order Issue, Register Renaming, & Branch Prediction John Wawrzynek Electrical Engineering.
Computer Architecture Advanced Branch Prediction
CS252 Graduate Computer Architecture Spring 2014 Lecture 8: Advanced Out-of-Order Superscalar Designs Part-II Krste Asanovic
Part IV Data Path and Control
Dr. George Michelogiannakis EECS, University of California at Berkeley
Samira Khan University of Virginia Nov 13, 2017
Flow Path Model of Superscalars
Dr. George Michelogiannakis EECS, University of California at Berkeley
CMSC 611: Advanced Computer Architecture
Module 3: Branch Prediction
Lecture 8: ILP and Speculation Contd. Chapter 2, Sections 2. 6, 2
CS252 Graduate Computer Architecture Lecture 8 Prediction/Speculation (Branches, Return Addrs) February 14th, 2011 John Kubiatowicz Electrical Engineering.
Branch statistics Branches occur every 4-6 instructions (16-25%) in integer programs; somewhat less frequently in scientific ones Unconditional branches.
CS 152 Computer Architecture and Engineering Lecture 13 - Out-of-Order Issue, Register Renaming, & Branch Prediction Krste Asanovic Electrical Engineering.
Ka-Ming Keung Swamy D Ponpandi
Adapted from the slides of Prof
15-740/ Computer Architecture Lecture 5: Precise Exceptions
Krste Asanovic Electrical Engineering and Computer Sciences
Krste Asanovic Electrical Engineering and Computer Sciences
Branch Prediction: Direction Predictors
Control unit extension for data hazards
Lecture 10: Branch Prediction and Instruction Delivery
CS203 – Advanced Computer Architecture
Branch Prediction: Direction Predictors
Adapted from the slides of Prof
CS 152 Computer Architecture and Engineering CS252 Graduate Computer Architecture Lecture 11 – Out-of-Order Execution Krste Asanovic Electrical Engineering.
Dynamic Hardware Prediction
Control unit extension for data hazards
Ka-Ming Keung Swamy D Ponpandi
Presentation transcript:

CS 152 Computer Architecture and Engineering CS252 Graduate Computer Architecture Lecture 12 – Branch Prediction and Advanced Out-of-Order Superscalars Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste http://inst.eecs.berkeley.edu/~cs152 CS252 S05

Last Time in Lecture 11 Phases of instruction execution: Fetch/decode/rename/dispatch/issue/execute/complete/commit Data-in-ROB design versus unified physical register design Superscalar register renaming

Control-Flow Penalty ~ Loop length x pipeline width + buffers Branch executed Next fetch started I-cache Fetch Buffer Issue Buffer Func. Units Arch. State Execute Decode Result Commit PC Fetch Modern processors may have > 10 pipeline stages between next PC calculation and branch resolution ! How much work is lost if pipeline doesn’t follow correct instruction flow? ~ Loop length x pipeline width + buffers CS252 S05

Reducing Control-Flow Penalty Software solutions Eliminate branches - loop unrolling Increases the run length Reduce resolution time - instruction scheduling Compute the branch condition as early as possible (of limited value because branches often in critical path through code) Hardware solutions Find something else to do (delay slots) Replaces pipeline bubbles with useful work (requires software cooperation) – quickly see diminishing returns Speculate, i.e., branch prediction Speculative execution of instructions beyond the branch Many advances in accuracy, widely used Like using compiler to avoid WAW hazards, one can use compiler to reduce control flow penalty. CS252 S05

Branch Prediction Motivation: Required hardware support: Branch penalties limit performance of deeply pipelined processors Modern branch predictors have high accuracy (>95%) and can reduce branch penalties significantly Required hardware support: Prediction structures: Branch history tables, branch target buffers, etc. Mispredict recovery mechanisms: Keep result computation separate from commit Kill instructions following branch in pipeline Restore state to that following branch CS252 S05

Importance of Branch Prediction Consider 4-way superscalar with 8 pipeline stages from fetch to dispatch, and 80-entry ROB, and 3 cycles from issue to branch resolution On a mispredict, could throw away 8*4+(80-1)=111 instructions Improving from 90% to 95% prediction accuracy, removes 50% of branch mispredicts If 1/6 instructions are branches, then move from 60 instructions between mispredicts, to 120 instructions between mispredicts

Static Branch Prediction Overall probability a branch is taken is ~60-70% but: backward 90% forward 50% ISA can attach preferred direction semantics to branches, e.g., Motorola MC88110 bne0 (preferred taken) beq0 (not taken) ISA can allow arbitrary choice of statically predicted direction, e.g., HP PA-RISC, Intel IA-64 typically reported as ~80% accurate CS252 S05

Dynamic Branch Prediction learning based on past behavior Temporal correlation The way a branch resolves may be a good predictor of the way it will resolve at the next execution Spatial correlation Several branches may resolve in a highly correlated manner (a preferred path of execution) CS252 S05

One-Bit Branch History Predictor For each branch, remember last way branch went Has problem with loop-closing backward branches, as two mispredicts occur on every loop execution first iteration predicts loop backwards branch not-taken (loop was exited last time) last iteration predicts loop backwards branch taken (loop continued last time)

Branch Prediction Bits Assume 2 BP bits per instruction Change the prediction after two consecutive mistakes! ¬take wrong taken ¬ taken right take BP state: (predict take/¬take) x (last prediction right/wrong) CS252 S05

Branch History Table (BHT) Fetch PC k BHT Index 2k-entry BHT, 2 bits/entry Taken/¬Taken? I-Cache Opcode offset Instruction Branch? Target PC + 4K-entry BHT, 2 bits/entry, ~80-90% correct predictions CS252 S05

Exploiting Spatial Correlation Yeh and Patt, 1992 if (x[i] < 7) then y += 1; if (x[i] < 5) then c -= 4; If first condition false, second condition also false History register, H, records the direction of the last N branches executed by the processor CS252 S05

Two-Level Branch Predictor Pentium Pro uses the result from the last two branches to select one of the four sets of BHT bits (~95% correct) k Fetch PC 2-bit global branch history shift register Shift in Taken/¬Taken results of each branch Taken/¬Taken? CS252 S05

Speculating Both Directions? An alternative to branch prediction is to execute both directions of a branch speculatively resource requirement is proportional to the number of concurrent speculative executions only half the resources engage in useful work when both directions of a branch are executed speculatively branch prediction takes less resources than speculative execution of both paths With accurate branch prediction, it is more cost effective to dedicate all resources to the predicted direction! CS252 S05

Limitations of BHTs Correctly predicted taken branch penalty Only predicts branch direction. Therefore, cannot redirect fetch stream until after branch target is determined. Correctly predicted taken branch penalty A PC Generation/Mux P Instruction Fetch Stage 1 F Instruction Fetch Stage 2 B Branch Address Calc/Begin Decode I Complete Decode J Steer Instructions to Functional units R Register File Read E Integer Execute Remainder of execute pipeline (+ another 6 stages) Jump Register penalty UltraSPARC-III fetch pipeline CS252 S05

Branch Target Buffer (BTB) 2k-entry direct-mapped BTB (can also be associative) I-Cache PC k Valid valid Entry PC = match predicted target target PC Keep both the branch PC and target PC in the BTB PC+4 is fetched if match fails Only taken branches and jumps held in BTB Next PC determined before branch fetched and decoded CS252 S05

Combining BTB and BHT BTB entries are considerably more expensive than BHT, but can redirect fetches at earlier stage in pipeline and can accelerate indirect branches (JR) BHT can hold many more entries and is more accurate BHT BHT in later pipeline stage corrects when BTB misses a predicted taken branch BTB A PC Generation/Mux P Instruction Fetch Stage 1 F Instruction Fetch Stage 2 B Branch Address Calc/Begin Decode I Complete Decode J Steer Instructions to Functional units R Register File Read E Integer Execute BTB/BHT only updated after branch resolves in E stage CS252 S05

Uses of Jump Register (JR) Switch statements (jump to address of matching case) Dynamic function call (jump to run-time function address) Subroutine returns (jump to return address) BTB works well if same case used repeatedly BTB works well if same function usually called, (e.g., in C++ programming, when objects have same type in virtual function call) BTB works well if usually return to the same place  Often one function called from many distinct call sites! How well does BTB work for each of these cases? CS252 S05

Subroutine Return Stack Small structure to accelerate JR for subroutine returns, typically much more accurate than BTBs. fa() { fb(); } fb() { fc(); } fc() { fd(); } Pop return address when subroutine return decoded Push call address when function call executed k entries (typically k=8-16) &fd() &fc() &fb() CS252 S05

Return Stack in Pipeline How to use return stack (RS) in deep fetch pipeline? Only know if subroutine call/return at decode RS RS Push/Pop after decode gives large bubble in fetch stream. A PC Generation/Mux P Instruction Fetch Stage 1 F Instruction Fetch Stage 2 B Branch Address Calc/Begin Decode I Complete Decode J Steer Instructions to Functional units R Register File Read E Integer Execute Return Stack prediction checked CS252 S05

Return Stack in Pipeline Can remember whether PC is subroutine call/return using BTB-like structure Instead of target-PC, just store push/pop bit RS Push/Pop before instructions decoded! A PC Generation/Mux P Instruction Fetch Stage 1 F Instruction Fetch Stage 2 B Branch Address Calc/Begin Decode I Complete Decode J Steer Instructions to Functional units R Register File Read E Integer Execute Return Stack prediction checked CS252 S05

In-Order vs. Out-of-Order Branch Prediction In-Order Issue Out-of-Order Issue Fetch Br. Pred. Fetch Br. Pred. In-Order Resolve Decode Resolve Decode In-Order Execute Out-of-Order ROB Execute In-Order Commit Commit Speculative fetch but not speculative execution - branch resolves before later instructions complete Completed values held in bypass network until commit Speculative execution, with branches resolved after later instructions complete Completed values held in rename registers in ROB or unified physical register file until commit Both styles of machine can use same branch predictors in front-end fetch pipeline, and both can execute multiple instructions per cycle Common to have 10-30 pipeline stages in either style of design

InO vs. OoO Mispredict Recovery In-order execution? Design so no instruction issued after branch can write-back before branch resolves Kill all instructions in pipeline behind mispredicted branch Out-of-order execution? Multiple instructions following branch in program order can complete before branch resolves A simple solution would be to handle like precise traps Problem? CS252 S05

Branch Misprediction in Pipeline Inject correct PC Branch Resolution Branch Prediction Kill Commit PC Fetch Decode Reorder Buffer Complete Execute Can have multiple unresolved branches in ROB Can resolve branches out-of-order by killing all the instructions in ROB that follow a mispredicted branch MIPS R10K uses four mask bits to tag instructions that are dependent on up to four speculative branches Mask bits cleared as branch resolves, and reused for next branch CS252 S05

Rename Table Recovery Have to quickly recover rename table on branch mispredicts MIPS R10K only has four snapshots for each of four outstanding speculative branches Alpha 21264 has 80 snapshots, one per ROB instruction

CS152 Administrivia Lab 2 extension, due Friday March 15 PS 3 due Monday March 18 CS252 S05

CS252 Administrivia Readings next week on OoO superscalar microprocessors

Improving Instruction Fetch Performance of speculative out-of-order machines often limited by instruction fetch bandwidth speculative execution can fetch 2-3x more instructions than are committed mispredict penalties dominated by time to refill instruction window taken branches are particularly troublesome

Increasing Taken Branch Bandwidth (Alpha 21264 I-Cache) Cached Instructions Line Predict Way Predict Tag Way 1 =? fast fetch path PC Generation PC Branch Prediction Instruction Decode Validity Checks 4 insts Hit/Miss/Way Fold 2-way tags and BTB into predicted next block Take tag checks, inst. decode, branch predict out of loop Raw RAM speed on critical loop (1 cycle at ~1 GHz) 2-bit hysteresis counter per block prevents overtraining

Tournament Branch Predictor (Alpha 21264) Choice predictor learns whether best to use local or global branch history in predicting next branch Global history is speculatively updated but restored on mispredict Claim 90-100% success on range of applications Local history table (1,024x10b) Local prediction (1,024x3b) Global Prediction (4,096x2b) Choice Prediction (4,096x2b) PC Prediction Global History (12b)

Taken Branch Limit Integer codes have a taken branch every 6-9 instructions To avoid fetch bottleneck, must execute multiple taken branches per cycle when increasing performance This implies: predicting multiple branches per cycle fetching multiple non-contiguous blocks per cycle

Branch Address Cache (Yeh, Marr, Patt) Entry PC Valid valid predicted target#1 target #1 len len#1 predicted target #2 k PC = match target#2 Extend BTB to return multiple branch predictions per cycle

Fetching Multiple Basic Blocks Requires either multiported cache: expensive interleaving: bank conflicts will occur Merging multiple blocks to feed to decoders adds latency, increasing mispredict penalty and reducing branch throughput

Trace Cache Key Idea: Pack multiple non-contiguous basic blocks into one contiguous trace cache line BR BR BR BR Single fetch brings in multiple basic blocks Trace cache indexed by start address and next n branch predictions Used in Intel Pentium-4 processor to hold decoded uops

Load-Store Queue Design After control hazards, data hazards through memory are probably next most important bottleneck to superscalar performance Modern superscalars use very sophisticated load-store reordering techniques to reduce effective memory latency by allowing loads to be speculatively issued

Speculative Store Buffer Store Address Store Data Just like register updates, stores should not modify the memory until after the instruction is committed. A speculative store buffer is a structure introduced to hold speculative store data. During decode, store buffer slot allocated in program order Stores split into “store address” and “store data” micro-operations “Store address” execution writes tag “Store data” execution writes data Store commits when oldest instruction and both address and data available: clear speculative bit and eventually move data to cache On store abort: clear valid bit Speculative Store Buffer Tag Data S V Tag Data S V Tag Data S V Tag Data S V Tag Data S V Tag Data S V Store Commit Path Tags Data L1 Data Cache CS252 S05

Load bypass from speculative store buffer Load Address L1 Data Cache Tag Data S V Tags Data Tag Data S V Tag Data S V Tag Data S V Tag Data S V Tag Data S V Load Data If data in both store buffer and cache, which should we use? Speculative store buffer If same address in store buffer twice, which should we use? Youngest store older than load CS252 S05

Memory Dependencies sd x1, (x2) ld x3, (x4) When can we execute the load? CS252 S05

In-Order Memory Queue Execute all loads and stores in program order => Load and store cannot leave ROB for execution until all previous loads and stores have completed execution Can still execute loads and stores speculatively, and out-of-order with respect to other instructions Need a structure to handle memory ordering… CS252 S05

Conservative O-o-O Load Execution sd x1, (x2) ld x3, (x4) Can execute load before store, if addresses known and x4 != x2 Each load address compared with addresses of all previous uncommitted stores can use partial conservative check i.e., bottom 12 bits of address, to save hardware Don’t execute load if any previous store address not known (MIPS R10K, 16-entry address queue) CS252 S05

Address Speculation sd x1, (x2) ld x3, (x4) Guess that x4 != x2 Execute load before store address known Need to hold all completed but uncommitted load/store addresses in program order If subsequently find x4==x2, squash load and all following instructions => Large penalty for inaccurate address speculation CS252 S05

Memory Dependence Prediction (Alpha 21264) sd x1, (x2) ld x3, (x4) Guess that x4 != x2 and execute load before store If later find x4==x2, squash load and all following instructions, but mark load instruction as store-wait Subsequent executions of the same load instruction will wait for all previous stores to complete Periodically clear store-wait bits CS252 S05

Acknowledgements This course is partly inspired by previous MIT 6.823 and Berkeley CS252 computer architecture courses created by my collaborators and colleagues: Arvind (MIT) Joel Emer (Intel/MIT) James Hoe (CMU) John Kubiatowicz (UCB) David Patterson (UCB)