Example segmentations - unseen images

Slides:



Advertisements
Similar presentations
What is it? GO ON BOAT BIKE CAR HELICOPTER VAN BUS TRAIN TRUCK
Advertisements

Section 1.1 The Distance and Midpoint Formulas. x axis y axis origin Rectangular or Cartesian Coordinate System.
Contour Based Approaches for Visual Object Recognition Jamie Shotton University of Cambridge Joint work with Roberto Cipolla, Andrew Blake.
Beyond bags of features: Part-based models Many slides adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba.
9.913 Pattern Recognition for Vision Class 8-2 – An Application of Clustering Bernd Heisele.
Object Recognition by Parts Object recognition started with line segments. - Roberts recognized objects from line segments and junctions. - This led to.
I.1 ii.2 iii.3 iv.4 1+1=. i.1 ii.2 iii.3 iv.4 1+1=
Object Class Recognition by Unsupervised Scale-Invariant Learning R. Fergus, P. Perona, and A. Zisserman Presented By Jeff.
Landmark Success Rate – Caltech A Airplane (0.69) Landmark LOOPS Car Rear (0.75) Face (0.84) Motorbike (0.92)
I.1 ii.2 iii.3 iv.4 1+1=. i.1 ii.2 iii.3 iv.4 1+1=
Object recognition. Object Classes Individual Recognition.
Cultural Visual Literacy Images Americans Should Recognize.
Olshausen’s Demo. 1.The Training set ?  Natural Images (Olhausen’s database)  How much do we learn ?  face database and car database 2.The Sparseness.
3-5 Equations, Tables, and Graphs Warm Up For each function, find the value of y for x = 0, x = 4, and x = –5. 1. y = 6x – 3 2. y = 3.8x – y = 1.6x.
8.1.4 Can it still be factored? Factoring Completely I can factor out a common factor.
Section 1.1 Rectangular Coordinates; Graphing Utilities; Introduction to Graphing Equations.
SciFest Overview Neil Gannon. Outline Demonstrations using a Microsoft Kinect sensor – Image Manipulation Real-time Invisibility Background removal (green.
Module 6 Mid-Chapter Test Review. Describe the Transformation from the Given Pre-Image to the Given Image 1. Pre-Image: Shape 1 Image: Shape 4 1. Answer:
(X,Y) Coordinate System ASAUCE. Objective: Plot points in the 4 quadrants to create lines by making a t-table of certain function. Purpose: Needed skills.
Discovering Objects and their Location in Images Josef Sivic 1, Bryan C. Russell 2, Alexei A. Efros 3, Andrew Zisserman 1 and William T. Freeman 2 Goal:
Motion Detection Frame 1Frame 2 Anomalous activity.
A PPLICATIONS OF TOPIC MODELS Daphna Weinshall B Slides credit: Joseph Sivic, Li Fei-Fei, Brian Russel and others.
Computer Vision: 3D Shape Reconstruction Use images to build 3D model of object or site 3D site model built from laser range scans collected by CMU autonomous.
基 督 再 來 (一). 經文: 1 你們心裡不要憂愁;你們信神,也當信我。 2 在我父的家裡有許多住處;若是沒有,我就早 已告訴你們了。我去原是為你們預備地去 。 3 我 若去為你們預備了地方,就必再來接你們到我那 裡去,我在 那裡,叫你們也在那裡, ] ( 約 14 : 1-3)
2-5 Equations, Tables, and Graphs Warm Up Warm Up Lesson Presentation Lesson Presentation Problem of the Day Problem of the Day Lesson Quizzes Lesson Quizzes.
Image from
Театр в России в XVIII -1пол.XIX вв. В начале 18 века, в Москве, на Красной площади впервые открылся публичный театр. В театре играла иностранная труппа.
ΟΡΓΑΝΩΣΗ ΚΑΙ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ 3 Ο ΜΑΘΗΜΑ. ΟΙ ΜΕΓΑΛΕΣ ΕΠΙΧΕΙΡΗΣΕΙΣ Η δημιουργία μεγάλων επιχειρήσεων είναι ένα από τα χαρακτηριστικά του 20 ου αιώνα.
Object Recognition by Parts
The topic discovery models
Figure Legend: From: Visual detection of symmetry of 3D shapes
Every segment is congruent to its image.
Every segment is congruent to its image.
A percent problem has three different parts:
Li Fei-Fei, UIUC Rob Fergus, MIT Antonio Torralba, MIT
Pictures and cars.
I I I I \ \ \ \ ' Belly Fat Burning Foods.
Rectangular Coordinates;
The topic discovery models
Multi-tier System of Supports
ФОНД ЗА РАЗВОЈ РЕПУБЛИКЕ СРБИЈЕ
Statistical Approach to a Color-based Face Detection Algorithm
Object Recognition by Parts
Chapter 10 Image Segmentation.
المبادئ الأساسية للصحة المهنية
CS654: Digital Image Analysis
Object Recognition by Parts
Слайд-дәріс Қарағанды мемлекеттік техникалық университеті
Multi-tier System of Supports
.. -"""--..J '. / /I/I =---=-- -, _ --, _ = :;:.
The topic discovery models
The Distance and Midpoint Formulas
II //II // \ Others Q.
Пасиви и пасивни операции Активи и активни операции
ОПЕРАТИВНА ПРОГРАМА “ИНОВАЦИИ И КОНКУРЕНТОСПОСОБНОСТ“ „Подобряване на производствения капацитет в МСП“
'III \-\- I ', I ,, - -
I1I1 a 1·1,.,.,,I.,,I · I 1··n I J,-·
Objective - To graph ordered pairs on the coordinate plane.
Solving Equations 3x+7 –7 13 –7 =.
Face Detection Gender Recognition 1 1 (19) 1 (1)
Мұхтар Әуезов «Әжемнің әңгімесі»
The Distance and Midpoint Formulas
Example Make x the subject of the formula
Rectangular Coordinates; Introduction to Graphing Equations
,, 'III \-\-
. '. '. I;.,, - - "!' - -·-·,Ii '.....,,......, -,
Object Recognition with Interest Operators
Review Summary 29 elements achieved by courses
უმაღლესი საგანმანათლებლო დაწესებულებების ავტორიზაცია:
U A B II III I IV 94.
Presentation transcript:

Example segmentations - unseen images Faces Background I Motorbikes Background II Airplanes Background III Cars Original images Segmentations All detected visual words 000117 000306 001448 001567 001986 002359 010748 010758

Faces Faces Background I Motorbikes Background II Airplanes Background III Cars

Motorbikes Faces Background I Motorbikes Background II Airplanes Background III Cars

Airplanes Faces Background I Motorbikes Background II Airplanes Background III Cars

Cars Faces Background I Motorbikes Background II Airplanes Background III Cars

ETH Motorbikes Faces Background I Motorbikes Background II Airplanes Background III Cars

ETH Motorbikes II Faces Background I Motorbikes Background II Airplanes Background III Cars

Faces – mixing weights Faces (0.26) Motorbikes (0.00) Airplanes (0.00) Cars (0.00) Background I (0.52) Background II (0.06) Background III (0.15)

Motorbikes - mixing weights Faces (0.04) Motorbikes (0.48) Airplanes (0.10) Cars (0.00) Background I (0.19) Background II (0.07) Background III (0.11)

Airplanes - mixing weights Faces (0.20) Motorbikes (0.00) Airplanes (0.51) Cars (0.00) Background I (0.02) Background II (0.27) Background III (0.00)

Cars - mixing weights Faces (0.03) Motorbikes (0.00) Airplanes (0.04) Background I (0.14) Background II (0.23) Background III (0.10)